Speaker
Daniel Klir
Description
See the full Abstract at http://ocs.ciemat.es/EPS2018ABS/pdf/I4.209.pdf
Ion acceleration mechanism in deuterium z-pinches
D. Klir1, A.V. Shishlov2,3, V.A. Kokshenev2, P. Kubes1, K. Rezac1,
R.K. Cherdizov2, J. Cikhardt1, B. Cikhardtova1, G.N. Dudkin3, F.I. Fursov2, J. Kaufman4,
J. Krasa4, J. Kravarik1, N.E. Kurmaev2, V. Munzar1, H. Orcikova5, V.N. Padalko3,
N.A. Ratakhin2,3, O. Sila1, K. Turek5, V.A. Varlachev3 and R. Wagner5
1
Czech Technical University in Prague, Prague, Czech Republic
2
Institute of High Current Electronics SB RAS, Tomsk, Russia
3
National Research Tomsk Polytechnic University, Tomsk, Russia
4
Institute of Physics, AS CR, Prague, Czech Republic
5
Nuclear Physics Institute, AS CR, Prague, Czech Republic
Acceleration of high energy ions was observed in z-pinches as early as in the 1950s. Even
though many theories have been suggested, the ion acceleration mechanism remains a source
of controversy. Recently, the experiments on the GIT-12 generator demonstrated acceleration
of hydrogen ions up to 30 MeV from a deuterium gas-puff z-pinch [1,2]. High deuteron energies
enable us to obtain unique information about ions and to discuss various hypotheses of ion
acceleration. The acceleration of 30 MeV deuterons can be explained by the fast increase of a
z-pinch impedance with a sub-nanosecond e-folding time. The high impedance of >10 Ω and
the generation of >GV/m electric fields could result from a breakdown of quasi-neutrality and
a gap formation after the ejection of plasmas from m=0 constrictions. Detailed knowledge of
the ion acceleration mechanism is used with a neutron-producing catcher to increase neutron
yields above 1013 at a current of 2.7 MA.
[1] D. Klir, P. Kubes, K. Rezac, J. Cikhardt, J. Kravarik, O. Sila, A.V. Shishlov, B.M. Kovalchuk, N.A. Ratakhin,
V.A. Kokshenev, A.Yu. Labetsky, R.K. Cherdizov, F.I. Fursov, N.E. Kurmaev, G.N. Dudkin, B.A. Nechaev, V.N.
Padalko, H. Orcikova, and K. Turek, Physical Review Letters 112, 095001 (2014).
[2] D. Klir, A.V. Shishlov, V.A. Kokshenev, P. Kubes, A.Yu. Labetsky, K. Rezac, R.K. Cherdizov, J. Cikhardt,
B.Cikhardtova, G.N. Dudkin, F.I. Fursov, A.A. Garapatsky, B.M. Kovalchuk, J. Krasa, J. Kravarik, N.E. Kurmaev,
H. Orcikova, V.N. Padalko, N.A. Ratakhin, O. Sila, K. Turek, V.A. Varlachev, A. Velyhan, and R. Wagner, Phys.
Plasmas 23, 032702 (2016).