

A synthetic synchrotron diagnostic for runaways in tokamaks

Mathias Hoppe¹ Ola Embréus¹, Alex Tinguely², Robert Granetz², Adam Stahl¹, Tünde Fülöp¹

¹ Chalmers University of Technology, Gothenburg, Sweden

² PSFC, Massachusetts Institute of Technology, Cambridge, Massachusetts

Outline

- 1. Theory of our synthetic diagnostic
- 2. Geometric effects
- 3. Image sensitivity to RE parameters
- 4. Modelling C-Mod discharge

2/17

Total power per pixel, per frequency interval d ω :

$$\begin{aligned} \frac{\mathrm{d}I_{ij}}{\mathrm{d}\omega}(\boldsymbol{x}_{0},\omega) &= \int \mathrm{d}\boldsymbol{x}\mathrm{d}\boldsymbol{p} \int_{A} \mathrm{d}A \int_{\boldsymbol{N}_{ij}} \mathrm{d}\boldsymbol{n} \times \\ &\times \frac{\hat{\boldsymbol{n}} \cdot \boldsymbol{n}}{r^{2}} f(\boldsymbol{x},\boldsymbol{p}) \delta\left(\frac{\boldsymbol{r}}{r} - \boldsymbol{n}\right) \frac{\mathrm{d}^{2} \boldsymbol{P}(\boldsymbol{x},\boldsymbol{p},\boldsymbol{x}_{0},\omega)}{\mathrm{d}\omega \mathrm{d}\Omega} \end{aligned}$$

Detector parameters

- A = Detector surface,
- n = Line-of-sight
- \hat{n} = Viewing direction
- \boldsymbol{x}_0 = Detector position

 $d^2 P/d\omega d\Omega$ = Angular and spectral distribution of synchrotron radiation,

$$f(\mathbf{x}, \mathbf{p}) =$$
 Distribution of runaways,

Particle parameters

 $r = |\mathbf{x} - \mathbf{x}_0|$ = Distance between camera and particle.

Three transformations

 $d\boldsymbol{x} d\boldsymbol{p} pprox d\boldsymbol{X} d\boldsymbol{p}_{\parallel} d\boldsymbol{p}_{\perp} d\boldsymbol{\zeta}$

^{1.} Guiding-center approx.,

Three transformations

1. Guiding-center approx.,

 $d\boldsymbol{x}d\boldsymbol{p} pprox d\boldsymbol{X}d\boldsymbol{p}_{\parallel}d\boldsymbol{p}_{\perp}d\boldsymbol{\zeta}$

2. Cylindrical coordinates,

 $d\mathbf{X} = R dR dz d\phi$

Three transformations

1. Guiding-center approx.,

 $d\boldsymbol{x}d\boldsymbol{p} pprox d\boldsymbol{X}d\boldsymbol{p}_{\parallel}d\boldsymbol{p}_{\perp}d\boldsymbol{\zeta}$

2. Cylindrical coordinates,

 $\mathrm{d} \pmb{X} = \pmb{R} \, \mathrm{d} \pmb{R} \mathrm{d} \pmb{z} \mathrm{d} \phi$

- 3. Trajectory coordinates (R,z)
 ightarrow (
 ho, au),
 - ρ: Major radius of particle in the midplane, at **beginning** of orbit
 - *τ*: Orbit time (a poloidal parameter)

Distribution function independent of:

- Toroidal angle ϕ Tokamak axisymmetry
- Gyrophase ζ Gyrotropy
- Orbit time τ Liouville's theorem

Guiding-center distribution specified along the line $\tau = \phi = 0$ (outer midplane).

$$\frac{\mathrm{d}I_{ij}}{\mathrm{d}\omega} = \int_{\mathcal{A}} \mathrm{d}\mathcal{A} \int_{\mathcal{N}_{ij}} \mathrm{d}\boldsymbol{n} \int \mathrm{d}\rho \mathrm{d}\tau \mathrm{d}\phi \mathrm{d}\boldsymbol{p}_{||} \mathrm{d}\boldsymbol{p}_{\perp} \times \boldsymbol{p}_{\perp} J \boldsymbol{R} \times \\ \times \frac{\hat{\boldsymbol{n}} \cdot \boldsymbol{n}}{r^{2}} f_{\mathrm{gc}}(\rho, \boldsymbol{p}_{||}, \boldsymbol{p}_{\perp}) \delta\left(\frac{\boldsymbol{r}}{r} - \boldsymbol{n}\right) \left\langle \frac{\mathrm{d}^{2} P(\rho, \boldsymbol{p}_{||}, \boldsymbol{p}_{\perp}, \boldsymbol{x}_{0}, \omega)}{\mathrm{d}\omega \mathrm{d}\Omega} \right\rangle$$

Synchrotron radiation

Angular and spectral distribution of synchrotron radiation:

$$\begin{aligned} \frac{\mathrm{d}^{2}P}{\mathrm{d}\omega\mathrm{d}\Omega} &= \frac{3e^{2}\beta^{2}\gamma^{6}\omega_{B}}{32\pi^{3}\epsilon_{0}c}\left(\frac{\omega}{\omega_{c}}\right)^{2}\left(\frac{1-\beta\cos\psi}{\beta\cos\psi}\right)^{2}\times\\ &\times\left[K_{2/3}^{2}(\xi) + \frac{(\beta/2)\cos\psi\sin^{2}\psi}{1-\beta\cos\psi}K_{1/3}^{2}(\xi)\right] \end{aligned}$$

Result of gyro-average:

Computes dI_{ij}/dω, and outputs synchrotron images and spectra

- Computes dI_{ij}/dω, and outputs synchrotron images and spectra
- Solves the guiding-center equations of motion using RKF45 in numeric magnetic geometry

- Computes dI_{ij}/dω, and outputs synchrotron images and spectra
- Solves the guiding-center equations of motion using RKF45 in numeric magnetic geometry
- Weighted with a given (numeric) runaway distribution function

- Computes dI_{ij}/dω, and outputs synchrotron images and spectra
- Solves the guiding-center equations of motion using RKF45 in numeric magnetic geometry
- Weighted with a given (numeric) runaway distribution function
- Full distribution runs in 5-10 hours on 4-core Xeon-based desktop, with sufficient resolution

Comparison with SYRUP [1]

- Geometric effects (SOFT) show significant difference in spectrum.
- Runaway distribution specified explicitly in outer-midplane (LF-side).
- Contributions mostly from HF-side.

[1] A. Stahl, et. al. PoP 20, 093302 (2013).

Parameter scans

C-Mod 1140403026, t ~ 0.742 s

Magnetic geometry: Alcator C-Mod, 3-8 T

- Radiation in the visible range
- Camera located 21 cm below midplane

Varied parameters:

- Energy E
- Pitch angle θ_p
- Initial radius

Parameter scans – Energy

Other parameters:

Beam radius	16 cm
Pitch angle	0.15 rad
Spectral range	500-1000 nm
Magnetic field	3-8 T
Camera elevation	-21 cm

Parameter scans – Pitch angle

Other parameters:

Beam radius	16 cm
Energy	30 MeV
Spectral range	500-1000 nm
Magnetic field	3-8 T
Camera elevation	-21 cm

Parameter scans – Launch radius

Other parameters:

Beam radius	16 cm
Energy	30 MeV
Pitch angle	0.15 rad
Spectral range	500-1000 nm
Magnetic field	3-8 T
Camera elevation	-21 cm

NOTE: Magnetic axis at R = 68 cm.

Particles at $R \lesssim$ 72 cm are invisible in this configuration.

Distribution function

- Simulated with CODE [2, 3]Parameters given on-axis
- [2] M. Landreman, et. al. CPC 185, 847 (2014).[3] A. Stahl, et. al. NF 56, 112009 (2016).

Distribution function

C-Mod 1140403026, t ~ 0.742 s

What do we actually see?

 SOFT allows study of synchrotron radiation in arbitrary axisymmetric magnetic configurations

- SOFT allows study of synchrotron radiation in arbitrary axisymmetric magnetic configurations
- Pitch angle varies along orbit ⇒ crucial to be clear about how the runaway distribution is specified.

- SOFT allows study of synchrotron radiation in arbitrary axisymmetric magnetic configurations
- Pitch angle varies along orbit ⇒ crucial to be clear about how the runaway distribution is specified.
- Detector placement strongly influences the observed synchrotron radiation.

- SOFT allows study of synchrotron radiation in arbitrary axisymmetric magnetic configurations
- Pitch angle varies along orbit ⇒ crucial to be clear about how the runaway distribution is specified.
- Detector placement strongly influences the observed synchrotron radiation.
- Sensitivity due to runaway properties helps inferring runaway distribution from image.

EXTRA SLIDES

19/ 17

Parameter scans – Camera vertical position

Other parameters:

Beam radius	16 cm
Energy	30 MeV
Pitch angle	0.15 rad
Spectral range	500-1000 nm
Magnetic field	3-8 T

