CHALMERS

A synthetic synchrotron diagnostic for runaways in tokamaks

Mathias Hoppe ${ }^{1}$

Ola Embréus ${ }^{1}$, Alex Tinguely ${ }^{2}$, Robert Granetz ${ }^{2}$, Adam Stahl ${ }^{1}$, Tünde Fülöp ${ }^{1}$
${ }^{1}$ Chalmers University of Technology, Gothenburg, Sweden
${ }^{2}$ PSFC, Massachusetts Institute of Technology, Cambridge, Massachusetts

Outline

1. Theory of our synthetic diagnostic
2. Geometric effects
3. Image sensitivity to RE parameters
4. Modelling C-Mod discharge

Synthetic synchrotron diagnostic theory

Total power per pixel, per frequency interval $d \omega$:

$$
\begin{aligned}
\frac{\mathrm{d} l_{i j}}{\mathrm{~d} \omega}\left(\boldsymbol{x}_{0}, \omega\right) & =\int \mathrm{d} \boldsymbol{x} \mathrm{~d} \boldsymbol{p} \int_{A} \mathrm{~d} A \int_{\boldsymbol{N}_{i j}} \mathrm{~d} \boldsymbol{n} \times \\
& \times \frac{\hat{\boldsymbol{n}} \cdot \boldsymbol{n}}{r^{2}} f(\boldsymbol{x}, \boldsymbol{p}) \delta\left(\frac{\boldsymbol{r}}{r}-\boldsymbol{n}\right) \frac{\mathrm{d}^{2} P\left(\boldsymbol{x}, \boldsymbol{p}, \boldsymbol{x}_{0}, \omega\right)}{\mathrm{d} \omega \mathrm{~d} \Omega}
\end{aligned}
$$

Detector parameters
A = Detector surface,
$\boldsymbol{n}=$ Line-of-sight
$\hat{\boldsymbol{n}}=$ Viewing direction
$\boldsymbol{x}_{0}=$ Detector position $\quad f(\boldsymbol{x}, \boldsymbol{p})=$ Distribution of runaways,

Particle parameters

$r=\left|\boldsymbol{x}-\boldsymbol{x}_{0}\right|=$ Distance between camera and particle.

Synthetic synchrotron diagnostic theory

Three transformations

1. Guiding-center approx.,

$$
\mathrm{d} \boldsymbol{x} \mathrm{~d} \boldsymbol{p} \approx \mathrm{~d} \boldsymbol{X} \mathrm{~d} p_{\|} \mathrm{d} p_{\perp} \mathrm{d} \zeta
$$

Synthetic synchrotron diagnostic theory

Three transformations

1. Guiding-center approx.,

$$
\mathrm{d} \boldsymbol{x} \mathrm{~d} \boldsymbol{p} \approx \mathrm{~d} X \mathrm{~d} p_{\|} \mathrm{d} p_{\perp} \mathrm{d} \zeta
$$

2. Cylindrical coordinates,

$$
\mathrm{d} \boldsymbol{X}=R \mathrm{~d} R \mathrm{~d} z \mathrm{~d} \phi
$$

Synthetic synchrotron diagnostic theory

Three transformations

1. Guiding-center approx.,

$$
\mathrm{d} \boldsymbol{x} \mathrm{~d} \boldsymbol{p} \approx \mathrm{~d} \boldsymbol{X} \mathrm{~d} p_{\|} \mathrm{d} p_{\perp} \mathrm{d} \zeta
$$

2. Cylindrical coordinates,

$$
\mathrm{d} \boldsymbol{X}=R \mathrm{~d} R \mathrm{~d} z \mathrm{~d} \phi
$$

3. Trajectory coordinates
$(R, z) \rightarrow(\rho, \tau)$,

- ρ : Major radius of particle in the midplane, at beginning of orbit
- τ : Orbit time (a poloidal parameter)

Synthetic synchrotron diagnostic theory

Distribution function independent of:

- Toroidal angle ϕ - Tokamak axisymmetry
- Gyrophase ζ - Gyrotropy
- Orbit time τ-Liouville's theorem

Guiding-center distribution specified along the line $\tau=\phi=0$ (outer midplane).

$$
\begin{aligned}
\frac{\mathrm{d} l_{i j}}{\mathrm{~d} \omega}= & \int_{A} \mathrm{~d} A \int_{\boldsymbol{N}_{i j}} \mathrm{~d} \boldsymbol{n} \int \mathrm{~d} \rho \mathrm{~d} \tau \mathrm{~d} \phi \mathrm{~d} p_{\|} \mathrm{d} p_{\perp} \times \boldsymbol{p}_{\perp} J R \times \\
& \times \frac{\hat{\boldsymbol{n}} \cdot \boldsymbol{n}}{r^{2}} f_{\mathrm{gc}}\left(\rho, \boldsymbol{p}_{\|}, \boldsymbol{p}_{\perp}\right) \delta\left(\frac{\boldsymbol{r}}{r}-\boldsymbol{n}\right)\left\langle\frac{\mathrm{d}^{2} P\left(\rho, \boldsymbol{p}_{\|}, \boldsymbol{p}_{\perp}, \boldsymbol{x}_{0}, \omega\right)}{\mathrm{d} \omega \mathrm{~d} \Omega}\right\rangle
\end{aligned}
$$

Synchrotron radiation

Angular and spectral distribution of synchrotron radiation:

$$
\begin{aligned}
\frac{\mathrm{d}^{2} P}{\mathrm{~d} \omega \mathrm{~d} \Omega} & =\frac{3 e^{2} \beta^{2} \gamma^{6} \omega_{B}}{32 \pi^{3} \epsilon_{0} c}\left(\frac{\omega}{\omega_{\mathrm{c}}}\right)^{2}\left(\frac{1-\beta \cos \psi}{\beta \cos \psi}\right)^{2} \times \\
& \times\left[K_{2 / 3}^{2}(\xi)+\frac{(\beta / 2) \cos \psi \sin ^{2} \psi}{1-\beta \cos \psi} K_{1 / 3}^{2}(\xi)\right]
\end{aligned}
$$

Result of gyro-average:

SOFT - Sychrotron-detecting Orbit Following Toolkit

- Computes $\mathrm{d} l_{i j} / \mathrm{d} \omega$, and outputs synchrotron images and spectra

SOFT - Sychrotron-detecting Orbit Following Toolkit

- Computes $\mathrm{d} l_{i j} / \mathrm{d} \omega$, and outputs synchrotron images and spectra
- Solves the guiding-center equations of motion using RKF45 in numeric magnetic geometry

SOFT - Sychrotron-detecting Orbit Following Toolkit

■ Computes $\mathrm{d} l_{i j} / \mathrm{d} \omega$, and outputs synchrotron images and spectra

- Solves the guiding-center equations of motion using RKF45 in numeric magnetic geometry
- Weighted with a given (numeric) runaway distribution function

SOFT - Sychrotron-detecting Orbit Following Toolkit

■ Computes $\mathrm{d} l_{i j} / \mathrm{d} \omega$, and outputs synchrotron images and spectra

- Solves the guiding-center equations of motion using RKF45 in numeric magnetic geometry
- Weighted with a given (numeric) runaway distribution function
- Full distribution runs in 5-10 hours on 4-core Xeon-based desktop,
 with sufficient resolution

Comparison with SYRUP [1]

- Geometric effects (SOFT) show significant difference in spectrum.
- Runaway distribution specified explicitly in outer-midplane (LF-side).
- Contributions mostly from HF-side.
[1] A. Stahl, et. al. PoP 20, 093302 (2013).

Parameter scans

C-Mod $1140403026, \mathrm{t} \sim 0.742 \mathrm{~S}$

Magnetic geometry: Alcator C-Mod, 3-8 T

- Radiation in the visible range
- Camera located 21 cm below midplane
Varied parameters:
- Energy E
- Pitch angle θ_{p}
- Initial radius

Parameter scans - Energy

Other parameters:

Beam radius	16 cm
Pitch angle	0.15 rad
Spectral range	$500-1000 \mathrm{~nm}$
Magnetic field	$3-8 \mathrm{~T}$
Camera elevation	-21 cm

$E=10 \mathrm{MeV}$	$E=25 \mathrm{MeV}$	100% 80% 60%
$E=40 \mathrm{MeV}$	$E=55 \mathrm{MeV}$	

Parameter scans - Pitch angle

Other parameters:

Beam radius	16 cm
Energy	30 MeV
Spectral range	$500-1000 \mathrm{~nm}$
Magnetic field	$3-8 \mathrm{~T}$
Camera elevation	-21 cm

$\theta_{\mathrm{p}}=0.02 \mathrm{rad} \theta_{\mathrm{p}}=0.10 \mathrm{rad}$	
$\theta_{\mathrm{p}}=0.18 \mathrm{rad}$	$\theta_{\mathrm{p}}=0.26 \mathrm{rad}$
80%	
60%	
-40%	
20%	
0	

Small pitch angle $=$ small GC cone
\Longrightarrow small chance of reaching detector

Large pitch angle $=$ large GC cone
\Longrightarrow greater chance of reaching detector

$\theta_{\mathrm{p}}=0.02 \mathrm{rad}$

Parameter scans - Launch radius

Other parameters:

Beam radius	16 cm
Energy	30 MeV
Pitch angle	0.15 rad
Spectral range	$500-1000 \mathrm{~nm}$
Magnetic field	$3-8 \mathrm{~T}$
Camera elevation	-21 cm

NOTE: Magnetic axis at $\boldsymbol{R}=\mathbf{6 8} \mathbf{c m}$.
Particles at $R \lesssim 72 \mathrm{~cm}$ are invisible in this configuration.

Distribution function

- Simulated with CODE [2, 3]
- Parameters given on-axis
[2] M. Landreman, et. al. CPC 185, 847 (2014).
[3] A. Stahl, et. al. NF 56, 112009 (2016).

Distribution function

C-Mod $1140403026, t \sim 0.742 \mathrm{~s}$

What do we actually see?

$$
f\left(p_{\|}, p_{\perp}\right)
$$

(Distribution function)

$" \hat{\jmath} \times f\left(p_{\|}, p_{\perp}\right) "$
(Emitted radiation)

Conclusions

- SOFT allows study of synchrotron radiation in arbitrary axisymmetric magnetic configurations

Conclusions

- SOFT allows study of synchrotron radiation in arbitrary axisymmetric magnetic configurations
- Pitch angle varies along orbit \Longrightarrow crucial to be clear about how the runaway distribution is specified.

Conclusions

- SOFT allows study of synchrotron radiation in arbitrary axisymmetric magnetic configurations
- Pitch angle varies along orbit \Longrightarrow crucial to be clear about how the runaway distribution is specified.
- Detector placement strongly influences the observed synchrotron radiation.

Conclusions

- SOFT allows study of synchrotron radiation in arbitrary axisymmetric magnetic configurations
- Pitch angle varies along orbit \Longrightarrow crucial to be clear about how the runaway distribution is specified.
- Detector placement strongly influences the observed synchrotron radiation.
- Sensitivity due to runaway properties helps inferring runaway distribution from image.

ExTRA SLIDES

Parameter scans - Camera vertical position

Other parameters:

Beam radius	16 cm
Energy	30 MeV
Pitch angle	0.15 rad
Spectral range	$500-1000 \mathrm{~nm}$
Magnetic field	$3-8 \mathrm{~T}$

