

Runaway electrons and JT-60SA Taina Kurki-Suonio

Aalto University

REM 2017, Prague, 8.6.2017

Runaway electrons and JT-60SA Alto University Konsta Särkimäki

REM 2017, Prague, 8.6.2017

- REs were recognized as one of the major threats/unknowns at project-planning meeting
- Currently no RE-modelling (at least from the European side)
- JT-60SA plans to study RE mitigation but they would rather avoid them

JT-60SA

"the best thing since sliced bread" (read: W7-X)

- ★ JT-60SA is The Device to
 - ★ prepare for successful operation of ITER
 - \star develop diagnostics for ITER
 - \star test predictions for ITER
 - \star prepare for problem situations in ITER
- - not just for ITER but even for DEMO

What does Europe have to do with a Japanese device?

i.e., JT-60SA is a *joint* device for Europe and Japan

Main features of JT-60SA

S=superconducting, A= advanced

Physical dimensions:

★ R = 2.93 – 2.97m
★ a = 1.11 – 1.18m
★ elongation: 1.80 – 1.91
★ triangularity: 0.41 – 0.5

Magnetic cage:

★B_T ~ 2.28 T ★I_p ~ 5.5 MA

P Dloomo booting

Plasma heating:

★7 MW of ECRH

- ★24 MW of conventional (P) NBI @85keV
- ★10 MW of negative (N) NBI @500keV

In dimensionless parameters, JT-60SA reaches towards ITER and DEMO

 $\rho_{p}^{*} = 0.46 \times 10^{-2} (A_{i})^{1/2} < T_{i}^{>1/2} / (B_{p} a) w A_{i}^{=2}$; $v^{*} = 0.8 \times 10^{-2} q R A^{3/2} Z_{eff}^{-2} < T_{e}^{>-2} < n_{e}^{>-2}$

Special (= interesting) features of JT-60SA

★ High plasma current:

- 5.5 MA in a low aspect ratio configuration ($R_0 = 2.96$ m, A=2.5)
- 4.6 MA in the ITER-shaped configuration ($R_0 = 2.93$ m, A=2.6)
- ★ Long pulses (100s) due to super-conducting coils
- ★ High energy *negative* neutral beams: 10 MW of 500 keV N-NB
- **★** JT-60SA goal for DEMO: demonstrate and sustain *integrated performance*
 - *high* H-factor, $β_N$, f_{BS} , non-inductively driven current fraction, normalized plasma density, fuel purity, and radiation power

For more details, see www.jt60sa.org: Research Plan

Parameters	#2 Full lp Inductive 41MW	#4-1 ITER-like- Shape Inductive 34MW	#4-2 Advanced inductive (hybrid) 37MW	#5-1 High βN Full CD 37MW	#5-2 High βN Full CD 31MW
Plasma current, I _P (MA)	5.5	4.6	3.5	2.3	2.1
Toroidal magnetic field, B _T (T)	2.25	2.28	2.28	1.72	1.62
Major radius, R _P (m)	2.96	2.93	2.93	2.97	2.96
Minor radius, a (m)	1.18	1.14	1.14	1.11	1.12
Aspect ratio, A	2.5	2.6	2.6	2.7	2.6
Elongation, KX, K95	1.87, 1.72	1.81, 1.70	1.80, 1.72	1.90, 1.83	1.91, 1.84
Triangularity, δx, δ95	0.50, 0.40	0.41, 0.33	0.41, 0.34	0.47, 0.42	0.45, 0.41
Safety factor, q95	3.0	3.2	4.4	5.8	6.0
Shape Parameter (=q95lp/(aBt))	6.3	5.7	5.9	7.0	7.0
Plasma Volume (m3)	131	122	122	124	124
Heating Power, Pheat (MW)	41	34	37	37	31
Temperature (Vol-ave.), <ti>,<te> (keV)</te></ti>	6.3, 6.3	3.7, 3.7	3.7, 3.7	3.4, 3.3	3.1, 2.9
Electron Density, Vol-ave. (E20/m3)	0.56	0.81	0.62	0.42	0.43
Stored Energy (Thermal, Fast ion) (MJ)	22.2, 4.0	18.0, 1.5	13.4, 2.1	8.4, 2.7	8.1, 1.7
Thermal Energy Confinement Time TE(s)	0.54	0.52	0.36	0.23	0.25
Current DiffusionTime (s)	32.7	15.2	14.6	12.6	10.8
Assumed Confinement improvement, HHy2	1.3	1.1	1.2	1.3	1.38
Normalized beta, β _N	3.1	2.8	3.0	4.3	4.3
Bootstrap current fraction, fBS	0.28	0.3	0.4	0.68	0.79
Non inductive CD fraction, fCD	0.5	0.43	0.58	1	1
Normalized density, ne/ nGW	0.5	0.8	0.8	0.85	1.0

Fast particles issues with eyes on fusion reactors (including ITER and DEMO)

Fast particles in tokamaks:

- ★ Fast ions (100keV MeVs)
 - Plasma heating = fusion conditions
 - ★ Current drive
 - ★ Plasma rotation
- ★ Fusion neutrons (1 ... 10 MeV)
 - tritium breeding,
 - DPA, activation of surrounding materials
 - ★ energy carriers
- ★ Potential run-away electrons (1 ...10 MeV)
 - ***** An enormous (undesired) welding torch

Run-away electrons

Key questions on REs in large tokamaks

- ★ Under which conditions do disruptions give rise to a runaway beam?
- ★ Can this process be prevented or mitigated?
- ★ Is it possible to transport runaway electrons as soon as they are generated?
- ★ If a runaway beam nonetheless forms, what are its characteristics?
- ★ Is it possible to slow the beam down progressively?
- ★ What are the effects of mitigation techniques such as MGI?
- ★ JT-60SA:
 - At a major disruption w/ I_p = 5.5 MA and $\tau_{_{\rm CQ}}$ =10 ms, $E_{_{\rm tor}}$ > 100 V/m > $E_{_{\rm Dreicer}}$

JT-60SA research on REs

"JT-60SA investigates ... runaway electron mitigation by applying killer pellet (KP) or massive gas injection (MGI) and/or application of helical fields (RMP) by in-vessel coils ..."

Proposed methods to avoid/mitigate REs:

- Unconditionally(?) avoided by massive Ne and/or
 Ar injection with > 5 kPam³
- RE generation can(?) be *mitigated* by applying helical fields with fast response time.
- Controlling REs:
 - confine(?) RE beam with isolating first walls
 - Mitigate(?) with time by MGI and KP.

Table 2-5 Research phases and status of the key components

	Phase	Expected Duration		Annual Neutron Limit	Remote Handling	Divertor	P−NB 85keV	N-NB 500keV	ECRF 110 GHz & 138GHz	Max Power	Power x Time
Initial	phase I	1-2y	н	-		LSN partial-	10MW		1.5MW x100s	23MW	
Phase	phase II	2-3y	D	4E19	R&D	Carbon Div.Pumping	Perp. 13MW Tang.		1.5MW x5s	33MW	NB: 20MW x 100s 30MW x 60s
Integrated Research Phase	phase I	2-3y	D	4E20		LSN full-monoblock		10.44	7.644	37MW	ECRF: 100s
	phase II	>2y	D	1E21		Carbon Div. Pumping	7MW	1010104			
Extended Research Phase		>5y	D	1.5E21	Use	DN/SN full-monoblock Metal or Carbon Advanced Structure	24MW		/ 19199	41MW	41MW x 100s

JT-60SA (I)	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
CASE I																	
Initial - I (H)			-														
Initial - II (D)			_		-												
Integrated-I							_										
Integrated-II									_								
Extended									_	_			_			-	

JT-60SA (II)	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
CASE II																	
Initial - I (H)	l		-			_											
Initial - II (D)																	
Integrated-I									-								
Integrated-II									_			-					
Extended												_			_		

* Each phase includes device up-grade period.

News from SARP (Super-Advanced research plan)

★ The Big News (R. Pitts):

ITER has decided that the Shattered Pellet Injection will be the ITER Baseline DMS

Reason(?): MGI found inefficient at JET \otimes [C. Reux et al., NF **55** (2015)] (This might affect also the decision "MGI \leftrightarrow SPI" in JT-60SA)

★ Status of diagnostics (Naoyuki Oyama)

–Due to double seal structure, the diameter of flange for each diagnostics is quite large \Rightarrow Number of diagnostics in one port is limited

-higher priority assigned to diagnostics for machine protection and operation

 \Rightarrow No room for new diagnostics

List of diagnostics for main chamber (in 18 Ports)

- ★ Laser interferometer (P1, P8)
- ★ Thomson scattering (P1, P2, P5, P8)
- ★ CXRS (P2, P5, P6, P7)
- ★ Neutron emission profile (P4, P10)
- ★ Neutron monitors (P6, P10, P18)
- ★ NPA (P4, P8)
- ★ Infrared TV camera (P6, P15, P18)
- ★ Visible TV camera (P6, P15, P18)
- ★ Zeff monitor (P1, P8)

- ★ ECE diagnostics (P9, P11)
- ★ VUV & crystal spectrometer (P10)
- * Bolometer (P16, P17, P18)
- ★ Soft X-ray detector array (P14)
- ★ Motional Stark effect polarimeter (P17)
- ★ EDICAM (P18)
- ★ Li beam probe(?), reflectometer (?) (P18)

