

Run-away studies in JET

E. Joffrin, L. Baylor, M. Lehnen, C. Reux and JET Contributors^{*} With contribution from O. Ficker, E. Nardon, R. Paprok, V. Riccardo

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

E. Joffrin | 5th REM meeting | 6th - 8th June 2017 | Page 1

- JET disruption mitigation system (DMS) overview
- Summary of JET results on run-away mitigation
- SPI overview design
- JET run-away programme objectives in 2018

JET is equipped with a comprehensive disruption mitigation system (DMS)

E. Joffrin | 5th REM meeting | 6th – 8th June 2017 | Page 3

Run-away existence domain in JET.

- RE generation using D₂+Ar MGI to determine the operational domain
- Domain boundary (entry points) similar between JET-C and JET-ILW
- Known runaway generation dependencies:
 - Accelerating electric field E_a
 - Critical electric field (Dreicer and avalanche mechanisms) $E_c = \frac{n_e e^3 ln\Lambda}{4\pi\epsilon^2 m_e c^2}$
 - Toroidal field B_t
- With divertor pulses: clear domain in (E_a/E_c, B_t) space
- At equal E_a/E_c, limiter pulses generate higher runaway currents

Strong dependence of RE generation on vertical position

Reux Nuc Fus 2015

E. Joffrin | 5th REM meeting | 6th – 8th June 2017 | Page 4

Example of JET on Be component damages in JET

Bubble-like damage to the upper dump and Inner Guard limiter place from run-aways localized toroidally Outer ends beryllium protection tiles all damaged in a similar way toroidally

In JET Massive gas injection is also inefficient in mitigating run-aways

- Massive gas injection inefficient at JET for mitigating RE for different gas (Ar, Kr, Xe,...) and pressures.
- Run-away beam can be mitigated by MGI in DIII-D, Tore Supra and ASDEX Upgrade.
- Hypotheses: the machine size or the surrounding plasma has a screening effect.

➔ This hypothesis has been tested on JET in November 2016: analysis on-going

In JET Massive gas injection is also inefficient in mitigating run-aways

- DMV1 was previously used to trigger runaway beams at JET (limiter configuration), DMV1 low pressure argon
- Recent experiments has proved that it is also possible with DMV3 (mid-plane)

- Longest post-disruptive runaway beam at JET-ILW with DMV3 (190 ms!)
- Much less gas injected to trigger the beam: possibly different generation conditions or runaway energies?
- To be confirmed with more statistics.
- Possible signs of enhanced mitigation with a second puff (DMV2 later in the beam phase)
- Role of the background plasma? Or RE energy ?

Reux, 2016 E. Joffrin | 5th REM meeting | 6th – 8th June 2017 | Page 7

JET – SXR tomography of 2nd DMV

Soft X-ray

- 1-20 keV, braking radiation of electrons, line radiation
- RE beam gas interaction

Tomography

- MFR Tikhonov regularization
- 2 cameras used
- Hollow profile gas cannot get into the beam??

Low assimilation reported using DMV

Penetration of impurities is likely to depend on

- Injection parameters (especially injection geometry)
- CQ / RE plasma parameters

Low assimilation reported from experiments

- JET: $f_{assim} = 0$ (from current decay and n_e)
- DIII-D: f_{assim} = 1 % range (from pressure balance)

Simulation are suggesting a role of the background plasma

- Works on Tore Supra [Saint-Laurent FST 2012], DIII-D [Hollmann NF 2013] and ASDEX Upgrade [Pautasso EPS 2015] but no effect on JET! [Reux et al., NF 2015]
- A possible explanation supported by simulations: gas cannot reach RE beam because it is "shielded" by the high density ($n_{e,bg} \sim 10^{20} \text{ m}^{-3}$) background plasma

Free + bound electron density vs. time and radius

Nardon EPS 2017

E. Joffrin | 5th REM meeting | 6th - 8th June 2017 | Page 10

In JET magnetic perturbations are inefficient in mitigating run-aways

EFCC and TF-ripple do not lead to a reduction of RE population in JET

JET

Relativistic (5-20MeV) electron particle motion modelling predicts no stochastization of trajectories at maximum EFCC coil currents.

Shattered pellet injected tested on DIII-D

Pellet injection (SPI) yields a faster and more efficient particle delivery than massive gas injection (MGI)
 SPI tested on DIII-D:

JE1

Shattered pellet injection has been tested on DIII-D and leads to deeper penetration and higher density assimilation than massive gas injection.

> Commaux, et al., Nucl. Fus. 2011

E. Joffrin | 5^{th} REM meeting | $6^{th} - 8^{th}$ June 2017 | Page 12

ITER DMS design overview

Baseline System: Shattered Pellet Injection *Thermal and electromagnetic load mitigation (TLM):* Ne < 8 kPam³, pre-TQ injection (back-up: early CQ) *Runaway electron suppression (RES):* Ar, Ne < 100 kPam³, D₂ < 50 kPam³, pre-TQ for RE suppression, post-TQ for runaway energy dissipation Significant gaps in physics basis especially on RE mitigation

and urgent need for R&D has been identified at the IO Workshop March 2017, report available.

E. Joffrin | 5^{th} REM meeting | $6^{th} - 8^{th}$ June 2017 | Page 13

Recent ITER STAC statement

- □ STAC endorses the IO strategy to have shattered pellet injection (SPI) as the primary baseline Disruption Mitigation System (DMS). However, there are concerns that the planned SPI systems may not be able to mitigate runaway electrons, which may cause serious damage to first wall components.
- □ Since the DMS is of utmost importance for ITER, it should receive the necessary priority over other sub-systems as needed to achieve its technical requirements. The DMS design should not be frozen prematurely and design flexibility should be retained including alternate port allocation, depending on the outcome of the forthcoming DIII-D and JET experiments.
- □ The STAC recommends that the IO work with the DAs and the ITPA to define an efficient framework for the coordination of the DMS R&D.

SPI installation on JET

Contractual framework: installation + research programme (17/01/2017)

- 1- European Atomic Energy Community (EURATOM): EUROfusion + CCFE
- 2- US DOE: ORNL + US ITER Project Office
- **3- ITER Organisation**

SPI shatter tube fits inside vertical injection line with bend just before entering the plasma.

Must be inserted from above which means a 40mm opening.

SPI main components (I): the injector

SPI main components (II): Pellets forming component and tube

JET

E. Joffrin | 5^{th} REM meeting | $6^{th} - 8^{th}$ June 2017 | Page 17

SPI: range of pellets / particle quantities

Barrel No	Diameter [mm]	Length [mm]	Expected range of pellet speed [m/s]	Ar quantity	Ne quantity	D2 quantity
1	12.5	31.25	150-200	9x10 ²²	1.6x10 ²³	2.3x10 ²³
2	8.0	12.0	150-200	1.5x10 ²²	2.6x10 ²²	3.6x10 ²²
3	4.5	5.8	250-500	-	4.0x10 ²¹	5.6x10 ²¹

- > Different pellet sizes for varying injection quantities to compare with MGI efficiency (~10²¹)
- > Option to vary the impurity quantity in the pellet by adding deuterium with accuracy below 1%,
- > Larger quantities of up to 10²³ are required to perform the studies on runaway energy dissipation.
- > The maximum argon quantities tested with MGI at JET were around $2x10^{23}$.
- > Note: the SPI is <u>not DT compatible</u>.

Run-away beam trajectory in the vacuum vessel

- Trajectory of the run-away beam current centroid measured by the magnetics.
- All data are taken from the current quench time until the end of the run-away beam.
- The beam moves towards the upper –inner board side (where the impacts are also observed)
- The planned cone for the SPI is crossed by the trajectory of the runaway
- All these examples have used DMV1 for generating the RE beam.
- In November 2016 it has been demonstrated that DMV2 or DMV3 are able to generate a upwardmoving beam.
- Action is presently on-going to improve the RE beam control in the chamber (2017 Task)

SPI at JET: programme for 2018 campaigns 🔘

Disruption mitigation is one of the <u>top three priorities</u> in the present JET programme of EUROfusion. It will remain so whilst testing SPI on JET.

The objectives of the experimental studies are as follows (as per the contract)

- 1. Assess the efficacy of SPI on runaway energy dissipation of a full blown runaway electron beam
- 2. Define the parameter domain for which pre-thermal quench injection with SPI fully prevents runaway electron generation; and
- 3. Assess the efficiency of SPI in preventing heat loads during the thermal and the current quench and in controlling the current quench rate.

→ The maximum number of experimental shifts allocated to testing SPI at JET is 16.

JET work organization and agenda

<u>2 Task forces:</u>	Integrated Operating scenario (IOS): J. Mailloux, M. Barruzo, M. Romanelli Physics and Technology for ITER (PTI): E. Joffrin, D. Borodin, J. Hillesheim, H. Weisen				
	1- Prepare scenarios for fusion performance and alpha particle physics.				
<u>3 Top objectives:</u>	 Determine the isotopes dependence of H-mode physics, SOL conditions and fuel retention. 				
	3- Quantify the efficacy of SPI versus MGI on runaway and disruption energy dissipation and extrapolate to ITER.				
12/05/2017:	Call for proposal (including the SPI). Members of this PB also recipients				
04/08/2017:	Deadline for receiving experiment proposals				
04/09/2017:	General task force meeting: discussion of priorities of proposals.				
End Oct 2017:	Plasma restart				
Mid Nov 2017:	Selection of Scientific coordinator and staffing.				
Mid Dec 2017:	Staffing finalised				
12/02/2017:	Start of C38 deuterium campaign until 27/07/2017				
1					

JET

http://users.euro-fusion.org/tfwiki/index.php/Proposals_C38_to_C42_

E. Joffrin | 5th REM meeting | 6th - 8th June 2017 | Page 21

Conclusions / prospects

- For the next 2018-19 experiment campaigns, JET ITER like Wall will be equipped with a comprehensive DMS for studying disruptions and run-away for ITER.
- → It is therefore essential that the EU and US community working on run-aways put together their efforts in this Programme for contributing to the safe operation of ITER.
- → An on-going analysis task in the present JET programme is already preparing the analysis and modelling tools for these experiments: you are welcome to join (T17-13: SC: C. Reux).
- → The JET programme is strongly encouraging your participation and ideas of experiments for 2018-19

