
Constrained quantum dynamics

Pavel Exner

Doppler Institute

for Mathematical Physics and Applied Mathematics
Prague

With thanks to all my collaborators

A minicourse at the 2nd International Summer School on Advanced Quantum Mechanics

Prague, September 2-11, 2021

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture V September 8, 2021 - 1 -



Spectrum vs. parameter values and geometry
We have encountered many situations when Hamiltonians governing
a guided dynamics had a discrete spectrum. We discussed mostly its
existence and sometimes also cardinality, now we are going to take a
closer look at the dependence of the eigenvalues on the parameters
involved and the problem geometry addressing the following questions:

The discussion of leaky structures in the previous lecture suggests
that their spectral properties depend on the strength of the attractive
singular interaction. We have seen, for instance, that weak coupling
depends on the dimension of the system.

It is even more important to analyze the opposite extremum, the
asymptotic behavior in the strong-coupling regime, α→∞.

Another question concerns the asymptotic behavior in the situation
when the geometric perturbation of the ‘trivial’ system is gentle.

A trademark topic of spectral geometry are relations between the
spectrum and the related shape; in the present context we find a
number of such problems.
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Strong δ interaction asymptotics
If the attraction is strong the motion is strongly localized transversally
and the geometry of Γ can be manifested in the discrete spectrum of the
operator Hα,Γ = −∆− αδ(x − Γ).

Let us start with the simplest situation of a curve in the plane, avoiding
first various ‘dangerous’ situations that may occur, specifically angles,
cusps, self-intersections, and ends. Then we have the following result:

Theorem

Let Γ be a C 4 smooth curve in R2 without ends, either a closed loop or
infinite, asymtotically straight and without ‘near crossings’. In the limit
α→∞ the jth eigenvalue of Hα,Γ behaves as

λj(α) = −α
2

4
+ µj +O(α−1 lnα)

where µj is the jth eigenvalue of SΓ = − d2

ds2 − 1
4κ(s)2 on L2(0, |Γ|) or

L2(R), respectively, where κ is curvature of Γ.

P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a strong δ-interaction on a loop, J.
Geom. Phys. 41 (2002), 344–358.
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Strong δ interaction asymptotics

Note that the restriction made were essential. Consider two halflines
meeting at a non-straight angle. We know that σdisc(Hα,Γ) 6= ∅ and in
view of the self-similarity of Γ, a simple scaling argument shows that its
eigenvalues behave as cα2 with some c < −1

4 with respect to α.

Furthermore, if curve Γ has a cusp of degree p > 1, that is, it is locally
homothetic to the graph of the function f (x) = |x |1/p, the strong coupling
asymptotics of the jth eigenvalue is

λj(α) = −α2 + cj(p)α
6

p+2 +O
(
α

6
p+2
−ηp),

where cj(p) and ηp are (explicitly known) positive constants.
B. Flamencourt, K. Pankrashkin: Strong coupling asymptotics for δ-interactions supported by curves with cusps, J.
Math. Anal. Appl. 491 (2020), 124287.

Under similar hypotheses on smoothness and absence of boundaries, the
claim extends to higher dimensions, specifically

for a curve in R2 we replace −1
4α

2 by εα = −4 e2(−2πα+ψ(1)).
P.E., S. Kondej: Strong-coupling asymptotic expansion for Schrödinger operators with a singular interaction supported by
a curve in R3, Rev. Math. Phys. 16 (2004), 559–582.
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Strong δ interaction asymptotics

For a surface in R3 we replace the above S by SΓ = −∆Γ + K −M2,
where −∆Γ is Laplace-Beltrami operator on Γ and K ,M, respectively,
are the corresponding Gauss and mean curvatures.

P.E., S. Kondej: Bound states due to a strong δ interaction supported by a curved surface, J. Phys. A: Math. Gen. 36
(2003), 443-457.

In a similar way one can treat periodic systems
using the Blach (Floquet, Gel’fand) decomposi-
tion: there is a unitary U such that UHα,ΓU−1 =∫ ⊕

[0,2π)r Hα,θ dθ and σ(Hα,Γ)=
⋃

[0,2π)r σ(Hα,θ).

 It is important to choose the periodic cells C of
the space and ΓC of the manifold consistently,
ΓC = Γ ∩ C. Note that ΓC is not necessarily a
‘straight slab’, even for d = 2, and for d = 3 it
need not be simply connected.
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Periodic manifold asymptotics

Theorem

Let Γ be a C 4-smooth r-periodic manifold without boundary. The strong
coupling asymptotic behavior of the jth Bloch eigenvalue is

λj(α, θ) = −1

4
α2 + µj(θ) +O(α−1 lnα) as α→∞

for codim Γ = 1

and

λj(α, θ) = εα + µj(θ) +O(eπα) as α→ −∞
for codim Γ = 2, where µj(θ) is the jth eigenvalue of the appropriate
comparison operator indicated above with Bloch boundary conditions.
The error terms are uniform w.r.t. θ.

P.E., S. Kondej: Strong-coupling asymptotic expansion for Schrödinger operators with a singular interaction supported by
a curve in R3, Rev. Math. Phys. 16 (2004), 559-582.

Corollary

If dim Γ = 1 and coupling is strong enough, Hα,Γ has open spectral gaps.

K. Yoshitomi: Band gap of the spectrum in periodically curved quantum waveguides, J. Diff. Eqs 142 (1998), 123–166.
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Strong δ interactions: sketch of the argument
Three essential ingredients are involved. The first
is Dirichlet-Neumann bracketing imposed at the
boundary Σa of the tubular neighborhood of Γ of
radius/halfwidth a, here sketched for a loop in R3.

 

This squeezes Hα,Γ between a pair of ‘disconnected’ operators, and since
we are interested in negative eigenvalues, we have to care about the tube
part only because the Dirichlet/Neumann Laplacian in the remaining part
of Rd is positive.

Then we use inside the tube the natural curvilinear (Fermi, parallel)
coordinates mentioned before, and estimate the coefficients to squeeze
Hα,Γ between operators with separated variables. For a curve in R2, e.g.
their longitudinal parts are

U±a = −(1∓ a‖κ‖∞)−2 d2

ds2
+ V±(s)

with PBC in the case of a loop, where V−(s) ≤ 1
4κ

2(s) ≤ V+(s) with an
O(a) error. In other words, the operators U±a are O(a) close to SΓ.
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Strong δ interactions: sketch of the argument
On the other hand, the transverse operators are related to the forms

t+
a,α[f ] =

∫ a

−a
|f ′(u)|2 du − α|f (0)|2

and t−a,α[f ] = t−a,α[f ]− ‖k‖∞(|f (a)|2 + |f (−a)|2) defined on the Sobolev

spaces W 1,2
0 (−a, a) and W 1,2(−a, a), respectively

. For large α the
presence of the boundaries cause an exponentially small error:

Lemma

There is a positive cN such that T±α,a has for α large enough a single
negative eigenvalue κ±α,a satisfying

−α
2

4

(
1 + cN e−αa/2

)
< κ−α,a < −

α2

4
< κ+

α,a < −
α2

4

(
1− 8 e−αa/2

)
Finally, we relate a to α by choosing a = 6α−1 lnα which yields the result.

In the other cases the proof is analogous. If codim Γ = 2 the transverse
part is the Dirichlet/Neumann disc of radius r with the point interaction
in the center; the error is again exponentially small as α→ −∞.
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negative eigenvalue κ±α,a satisfying

−α
2

4

(
1 + cN e−αa/2

)
< κ−α,a < −

α2

4
< κ+

α,a < −
α2

4

(
1− 8 e−αa/2

)
Finally, we relate a to α by choosing a = 6α−1 lnα which yields the result.

In the other cases the proof is analogous. If codim Γ = 2 the transverse
part is the Dirichlet/Neumann disc of radius r with the point interaction
in the center; the error is again exponentially small as α→ −∞.
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Curves with ends
We have seen that the described method yields for finite or semifinite
curves gives the asymptotics for the number of bound states, but fails to
do that for individual eigenvalues — the difference between Dirichlet and
Neumann conditions imposed on the comparison operator is too big.

One conjectures that the ‘correct’ boundary conditions are Dirichlet. For
a finite planar curve this is indeed the case:

Theorem (E-Pankrashkin’14)

Suppose Γ is a C 4 smooth open arc in R2 of length L with regular ends;
then the strong-coupling limit of the jth negative eigenvalue of Hα,Γ is

λj(α) = −1

4
α2 + µj +O

( lnα

α

)
as α→ +∞

where µj is the jth eigenvalue of the operator − d2

ds2 − 1
4κ(s)2 on L2(0, L)

with Dirichlet b.c., where κ(s) is as before the signed curvature of Γ at
the point s ∈ (0, L).

P.E., K. Pankrashkin: Strong coupling asymptotics for a singular Schrödinger operator with an interaction supported by
an open arc, Comm. PDE 39 (2014), 193–212.
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Curves with ends: sketch of the argument

We use again bracketing estimates but now they have to be modified.
The upper (Dirichlet) one works as before, while for the lower (Neumann)
one we employ the fact that the arc Γ has by assumption regular ends,
meaning that it can be extended smoothly in the vicinity of its endpoints.

Recall the generalized Birman-Schwinget principle; it allows us to express
solution to Hα,Γψj = −µ2

j ψj as ψj(x) = 1
2π

∫
Γ K0(µj |x − Γ(s)|)φj(s)ds, in

other words, as convolutions of the Laplacian Green’s function with the
corresponding BS eigenfunctions, Rµjα,Γφj = φj .

We choose an ‘extended’ tubular neighborhood,
at each endpoint longer by a := 6

α lnα. Now
we loose the advantage of variable separation
but with the help of the above formula one can
check that the Neumann condition imposed at
this distance from the curve has an effect which
can be included into the error term. An extended neighbourhood
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Curves with ends, codim Γ = 2

Using a similar argument, just technically a bit more involved, one can
obtain asymptotic results for an arc in R3:

Theorem

Let Hα,Γ correspond to a finite, non-closed C 4 smooth curve in R3 with
regular ends having length L and the global Frenet frame.

(i) The cardinality of the discrete spectrum behaves asymptotically as

]σdisc(Hα,Γ) =
L

π
(−εα)1/2(1 +O(eπα)) as α→ −∞.

(ii) Furthermore, the jth eigenvalue of Hα,Γ has the expansion

λj(Hα,Γ) = εα + µj +O(eπα) for α→ −∞,

where µj corresponds to same the operator S on L2(0, L) as above.

P.E., S. Kondej: Strong coupling asymptotics for Schrödinger operators with an interaction supported by an open arc in
three dimensions, Rep. Math. Phys. 77 (2016), 1–17.
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Surfaces with a boundary
Let Γ ⊂ R3 be now a C 4-smooth relatively compact orientable surface
with a compact Lipschitz boundary ∂Γ. In addition, we suppose that Γ
can be extended through the boundary, in other words, that there exists
a larger C 4-smooth surface Γ2 such that Γ ⊂ Γ2.

We consider again the comparison operator SΓ = −∆D
Γ + K −M2, where

−∆D
Γ is Laplace-Beltrami operator on Γ, now with Dirichlet condition at

∂Γ, and K ,M, respectively, are the Gauss and mean curvatures of Γ. We
denote eigenvalues of this operator as µDj , j ∈ N, then we have

Theorem

Let Γ be as above, then for any fixed j ∈ N we have

λj(Hα,Γ) = −α
2

4
+ µDj + o(1) as α→∞ .

If, in addition, Γ has a C 2 boundary, then the remainder estimate can be
replaced by O(α−1 lnα).

J. Dittrich, P.E., Ch. Kühn, K. Pankrashkin: On eigenvalue asymptotics for strong δ-interactions supported by surfaces
with boundaries, Asympt. Anal. 97 (2016), 1–25.
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Another asymptotics: slightly bent curves

Let us turn to the other asymptotic problem mentioned in the opening.
The simplest example is a broken line Γ = Γβ with a small angle β.

         

````````̀

   
  
β

We keep α fixed and denote HΓβ
:= Hα,Γβ

. We know that this operator
has eigenvalues, a single one for small β.

For slightly bent Dirichlet tubes one derives using BS principle that the
gap is proportional to the fourth power of the bending angle; led by this
analogy we conjecture that

λ(HΓβ
) = −1

4
α2 + aβ4 + o(β4)

holds with some constant a < 0 as β → 0+.

The question now is (a) what is the coefficient a, and (b) what is the class
of curves for which such a formula holds.
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Weakly bent curves, continued

Let us first specify the class of curves we shall consider: Γ will be a
continuous and piecewise C 2 infinite planar curve without self-intersections
parametrized by its arc length, i.e. the graph of a piecewise C 2-smooth
function Γ : R→ R2 such that |Γ̇(s)| = 1. Moreover,

there exists a c ∈ (0, 1) such that |Γ(s)− Γ(s ′)| ≥ c |s − s ′| holds
for s, s ′ ∈ R excluding, in particular, U shapes.

there are real numbers s1 > s2 and straight lines Σi , i = 1, 2, such
that Γ coincides with Σ1 for s ≤ s1 and with Σ2 for s ≥ s2,

one-sided limits of Γ̇ exist at the points where the function Γ̈ is
discontinuous, i.e. Γ has angles there.

In particular, the signed curvature γ(s) = Γ̇2(s)Γ̈1(s)− Γ̇1(s)Γ̈2(s) is
piecewise continuous and the one-sided limits of Γ̇, i.e. tangent vectors
to the curve at the points of discontinuity exist. We denote them as
Π = {pi}]Πi=1 and shall speak of them as of vertices. Consequently, Γ
consists of ]Π + 1 simple arcs or edges, each having as its endpoints
one or two of the vertices.
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Weakly bent curves, continued
The curvature integral describes bending of the curve. Specifically,
the angle between the tangents at the points Γ(s) and Γ(s ′) equals

φ(s, s ′) =
∑

pi∈(s,s′)

g(pi ) +

∫
(s,s′)\Π

γ(ζ) dζ,

where g(pi ) ∈ (0, π) is the exterior angle of the two adjacent edges
of Γ meeting at the vertex pi .

Alternatively, we can understand φ(s, s ′) as the integral over the interval
(s, s ′) of γ̃ : γ̃(s) = γ(s) +

∑
p∈Π g(p) δ(s − p). By assumption γ, γ̃ are

compactly supported, thus φ(s, s ′) has the same value for all s < s1 and
s2 < s ′ which we shall call the total bending.

One can reconstruct Γ from γ̃, uniquely up to Euclidean transformations,

Γ(s) =

(∫ s

0
cosφ(u, 0)du ,

∫ s

0
sinφ(u, 0) du

)
.
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Weakly bent curves, continued

Now we introduce the one-parameter family of ‘scaled’ curves Γβ,

Γβ(s) =

(∫ s

0
cosβφ(u, 0)du ,

∫ s

0
sinβφ(u, 0))du

)
, |β| ∈ (0, 1] .

Note that depending on (non)vanishing of the total bending of Γ the limit
β → 0+ may have a different meaning, say ‘straightening’ or ‘flattening’.

Next we define an integral operator A : L2(R)→ L2(R) through its kernel,

A(s, s ′) :=
α4

32π
K ′0

(α
2
|s − s ′|

)(
|s − s ′|−1

(∫ s

s′
φ(s ′′)ds ′′

)2

−
∫ s

s′
φ(s ′′)2ds ′′

)
.

Lemma

Under the stated assumptions, we have
∫
R×RA(s, s ′) ds ds ′ <∞.
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A(s, s ′) :=
α4

32π
K ′0

(α
2
|s − s ′|

)(
|s − s ′|−1

(∫ s

s′
φ(s ′′)ds ′′

)2

−
∫ s

s′
φ(s ′′)2ds ′′

)
.

Lemma

Under the stated assumptions, we have
∫
R×RA(s, s ′) ds ds ′ <∞.
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Weakly bent curves, the result
With these prerequisites, we are finally able to state the sought weak-
bending result:

Theorem

There is a β0 > 0 such that for any β ∈ (−β0, 0)∪ (0, β0) the operator HΓβ

has a unique eigenvalue λ(HΓβ
) which admits the asymptotic expansion

λ(HΓβ
) = −α

2

4
−
(∫

R×R
A(s, s ′)ds ds ′

)2

β4 + o(β4) .

P.E., S. Kondej: Gap asymptotics in a weakly bent leaky quantum wire, J. Phys. A48 (2015), 495301

Proof is again based on the generalized Birman-Schwinger principle which
we recall here: it says that

−κ2 ∈ σd(HΓβ
) ⇔ ker(I − αQΓβ

(κ)) 6= ∅ ,
where QΓβ

(κ) is the integral operator with the kernel

QΓβ
(κ; s, s ′) =

1

2π
K0(κ|Γβ(s)− Γβ(s ′)|) ;

moreover, we have dimker(HΓβ
+ κ2) = dimker(I − αQΓβ

(κ)).
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Weakly bent curves, continued

One has to compare with the Birman-Schwinger operator corresponding
to the straight line which has the kernel K0

(
κ
2 |s − s ′|

)
in the vicinity of

the point κ = 1
2α corresponding to threshold of the essential spectrum.

Let us return to the broken-line example: in this case A(s, s ′) can be
found easily, it vanishes if s, s ′ have the same sign, being otherwise

A(s, s ′) =
α4

32π
K ′0

(α
2
|s − s ′|

) |ss ′|
|s − s ′|

χΩ(s, s ′) ,

where χΩ(·, ·) is the characteristic function of the set Ω, the union of
the second and fourth quadrant. The integral of A(s, s ′) over the both
variable can be computed explicitly giving

−1
4α

2 − λ(HΓβ
)

−1
4α

2
= − 1

9π2
β4 + o(β4) .
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Weakly deformed planes

We can pose the same question in dimension three but it is more subtle,
because then global properties of the interaction support play now role

;
recall that a conical surface, however ‘flat’ it may be, i.e. for any θ > 0,
gives rise to an infinite discrete spectrum

Let us thus restrict our attention to locally deformed planes: consider
Γ = Γβ(f ) ⊂ R3 with β > 0 given by

Γβ :=
{

(x1, x2, x3) ∈ R3 : x3 = βf (x1, x2)
}
⊂ R3 ,

where f : R2 → R is a nonzero C 2-smooth, compactly supported function
and ask how the spectrum of Hα,β := −∆− αδ(x − Γβ) in the asymptotic
regime β → 0+.
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The asymptotic expansion

The method to use is again Birman-Schwinger analysis; it yields

Theorem

Let α > 0 be fixed and set

Dα,f :=

∫
R2

|p|2
(
α2 − 2α3√

4|p|2 + α2 + α

)
|f̂ (p)|2dp > 0 ,

where f̂ is the Fourier transform of f . Then #σdisc(Hα,β) = 1 holds for
all sufficiently small β > 0 and, moreover, λα1 (β) admits the asymptotic
expansion

λα1 (β) = −α
2

4
− exp

(
− 16π

Dα,f β2

)(
1 + o(1)

)
as β → 0+

P.E., S. Kondej, V. Lotoreichik: Asymptotics of the bound state induced by δ-interaction supported on a weakly
deformed plane, J. Math. Phys. 59 (2018), 013051
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Spectral optimization

Let us turn to the other topic mentioned in the opening. A traditional
spectral geometry question is about the shape which makes a given
property optimal.

Quite often the optimal shape has a symmetry; the most classical example
is the Faber-Krahn inequality proving a conjecture put forward by Lord
Rayleigh: let λ1(Ω) be the principal eigenvalues of the Dirichlet Laplacian
−∆D

Ω for a region Ω ⊂ Rd . Assuming that vol(Ω) is kept fixed, then
λ1(Ω) is sharply minimized by a ball.

G. Faber: Beweiss das unter allen homogenen Membranen von Gleicher Fläche und gleicher Spannung die kreisförmige
den Tiefsten Grundton gibt, Sitzungber. der math.-phys. Klasse der Bayerische Akad. der Wiss. zu München (1923),
169–172.

E. Krahn: Über eine von Rayleigh formulierte minimal Eigenschaft des Kreises, Ann. Math. 94 (1925), 97–100.

To give one more example, let us mention the Payne-Pólya-Weinberger
inequality: in the same situation the ratio of the first two eigenvalues,
λ2(Ω)
λ1(Ω) , is sharply maximized by a ball.

M.S. Ashbaugh, R.D. Benguria: A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and
extensions, Ann. Math. 135 (1992), 601–628.
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Non-simply connected regions
Not always does the intuition tells us the right answer

. For instance,
the topology may play role. Let us mention pictorially two examples in
maximum symmetry may lead to maximum of the principal eigenvalue
If we seek extremum among strips of fixed length and width we have

�� 	
��
����
��
! ��

��
&%
'$

ground state of ground state of<

whenever the strip is not a circular annulus.
P.E., E.M. Harrell, M. Loss: Optimal eigenvalues for some Laplacians and Schrödinger operators depending on curvature,
in Proceedings of QMath7, Birkhäuser, Basel 1999; pp. 47–53.

Similarly, for a circular obstacle in circular cavity we have

m
&%
'$ m

&%
'$

ground state of ground state of<

whenever the obstacle is off center; the minimum is reached when it is
touching the boundary.

E.M. Harrell, P. Kröger, K. Kurata: On the placement of an obstacle or a well so as to optimize the fundamental
eigenvalue, SIAM J. Math. Anal. 33 (2001), 240–259.
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E.M. Harrell, P. Kröger, K. Kurata: On the placement of an obstacle or a well so as to optimize the fundamental
eigenvalue, SIAM J. Math. Anal. 33 (2001), 240–259.

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture V September 8, 2021 - 22 -



A leaky loop analogue
Let Γ be a loop in Rd , d ≥ 2, parametrized by its arc length, i.e. a
piecewise differentiable function Γ : [0, L]→ Rd such that Γ(0) = Γ(L)
and |Γ̇(s)| = 1 for all but finitely many s ∈ [0, L]

. We have

Theorem

Let d = 2. For any α > 0 and L > 0 we have λ1(α, Γ) ≤ λ1(α, C),
where C is a circle of perimeter L, the inequality being sharp unless Γ
is congruent with C.

P.E., E.M. Harrell, M. Loss: Inequalities for means of chords, with application to isoperimetric problems, Lett. Math.
Phys. 75 (2006), 242–233; addendum 77 (2006), 219.

One more time, we employs the generalized Birman-Schwinger principle
by which there is one-to-one correspondence between eigenvalues −κ2 of
Hα,Γ and solutions to the integral-operator equation

Rκα,Γφ = φ , where Rκα,Γ(s, s ′) :=
α

2π
K0(κ|Γ(s)− Γ(s ′)|)

on L2([0, L]), where K0 is the Macdonald function.
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Rephrasing it as a geometric problem

We employ inequalities on mean values of chords denoted as Cp
L (u):∫ L

0
|Γ(s + u)− Γ(s)|pds ≤ L1+p

πp
sinp

πu

L
, p > 0, u ∈ (0, 1

2L]

This may not be true for all p > 0, however, a simple Fourier analysis
allows one to demonstrate the following result:

Proposition

C 2
L (u) is valid for any u ∈ (0, 1

2L], and the inequality is strict unless Γ is a
planar circle; by convexity the same is true for all p < 2.

Using a variational argument together with the fact that K0(·) appearing
in the resolvent kernel is strictly monotonous and convex the optimization
problem for Rκα,Γ is reduced to the inequality C 1

L (u) being thus proved.

Remark: The (reverse) inequalities hold also for p ∈ [−2, 0) showing, e.g.,
that a charged loop in the absence of gravity takes a circular form.
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A discrete analogue: polymer loops

Consider the same loop as above with point interactions placed
at the arc distances jL

N , j = 0, . . . ,N1, in other words, the formal
Hamiltonian

HN
α,Γ = −∆ + α̃

N−1∑
j=0

δ
(
x − Γ

( jL
N

))
in L2(Rd), d = 2, 3, where the last term has to be properly defined

We are interested in the shape of Γ which maximizes the ground
state energy provided, of course, that the discrete spectrum of HN

α,Γ

is non-empty; this requirement is nontrivial for d = 3.

Introduce the generalized boundary values as the coefficients in the
expansion of H∗Y where HY is the Laplacian restricted to functions
vanishing at the vicinity of the points of Y .

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture V September 8, 2021 - 25 -



A discrete analogue: polymer loops

Consider the same loop as above with point interactions placed
at the arc distances jL

N , j = 0, . . . ,N1, in other words, the formal
Hamiltonian

HN
α,Γ = −∆ + α̃

N−1∑
j=0

δ
(
x − Γ

( jL
N

))
in L2(Rd), d = 2, 3, where the last term has to be properly defined

We are interested in the shape of Γ which maximizes the ground
state energy provided, of course, that the discrete spectrum of HN

α,Γ

is non-empty; this requirement is nontrivial for d = 3.

Introduce the generalized boundary values as the coefficients in the
expansion of H∗Y where HY is the Laplacian restricted to functions
vanishing at the vicinity of the points of Y .

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture V September 8, 2021 - 25 -



A discrete analogue: polymer loops

Consider the same loop as above with point interactions placed
at the arc distances jL

N , j = 0, . . . ,N1, in other words, the formal
Hamiltonian

HN
α,Γ = −∆ + α̃

N−1∑
j=0

δ
(
x − Γ

( jL
N

))
in L2(Rd), d = 2, 3, where the last term has to be properly defined

We are interested in the shape of Γ which maximizes the ground
state energy provided, of course, that the discrete spectrum of HN

α,Γ

is non-empty; this requirement is nontrivial for d = 3.

Introduce the generalized boundary values as the coefficients in the
expansion of H∗Y where HY is the Laplacian restricted to functions
vanishing at the vicinity of the points of Y .

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture V September 8, 2021 - 25 -



Point interactions ‘necklaces’
A reminder: fixing the points yj ∈ Y the said expansions look as

ψ(x) = − 1

2π
log |x − yj | L0(ψ, yj) + L1(ψ, yj) +O(|x − yj |), d = 2,

ψ(x) =
1

4π|x − yj |
L0(ψ, yj) + L1(ψ, yj) +O(|x − yj |), d = 3.

Local self-adjoint extension are then given by

L1(ψ, yj)− αL0(ψ, yj) = 0 , α ∈ R;

the absence of interaction corresponds to α =∞, for details we refer to

S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden: Solvable Models in Quantum Mechanics, second edition, Amer.
Math. Soc., Providence, R.I., 2005.

Theorem

The ground state of HN
α,Γ is uniquely maximized by a N-regular polygon.

P.E.: Necklaces with interacting beads: isoperimetric problems, in Proceedings of the “International Conference on
Differential Equations and Mathematical Physics” (Birmingham 2006), AMS Contemporary Mathematics Series, vol.
412, Providence, R.I., 2006; pp. 141-149.
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New effects in three dimensions

In three dimensions the discrete spectrum of Hα,Γ = −∆− αδ(x − Γ)
may be empty is α is small enough. Recall the sphere example mentioned
earlier where bound states are known to exist if and only if αR > 1.

This raises the following question: given the critical sphere, αR = 1, would
its deformation produce a discrete spectrum? One answer is

Theorem

Let Γε by a deformation of the sphere expressed in spherical coordinates
as r(θ, φ) = R(1 + ερ(θ, φ)) where ρ is nonzero function of zero mean. If
Hα,Γ0 is critical, σdisc(Hα,Γε) 6= ∅ holds for all nonzero ε small enough.

P.E., M. Fraas: On geometric perturbations of critical Schrödinger operators with a surface interaction, J. Math. Phys.
50 (2009), 112101.

Remarks: (a) The results fails to hold globally: if a surface-preserving deformation
of a critical surface is elongated enough, the discrete spectrum is empty.

(b) In contrast, deformation of a critical surface always produces a nonvoid
discrete spectrum if it is capacity preserving.
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Cones
We have mentioned conical surfaces. To state the question, let T be
a C 2-smooth loop on the 2D unit sphere S2 ⊂ R3 of length |T | without
self-intersections. We distinguish between circular and non-circular loops;
a circle C ⊂ S2 has, of course, the length |C| ≤ 2π.

The C 2-smooth cone ΣR(T ) ⊂ R3 of radius R ∈ (0,∞] with a C 2-smooth
loop T ⊂ S2 as its cross-section is

ΣR(T ) :=
{
rT ∈ R3 : r ∈ [0,R)

}
;

it is called finite (or truncated) if R <∞ and infinite otherwise.

Theorem

For finite cones ΓR := ΣR(C) and ΛR := ΣR(T ) of radius R > 0 with
L := |C| = |T | ∈ (0, 2π] we have #σdisc(Hα,ΓR

) ≥ 1 if and only if α > αcrit

holds for some αcrit(L,R) > 0. If the loops T and C are not congruent,
σcrit(Hα,ΛR

) is nonempty for α ≥ αcrit and λ1(Hα,ΛR
) < λ1(Hα,ΓR

).

P.E., V. Lotoreichik: A spectral isoperimetric inequality for cones, Lett. Math. Phys. 107 (2017), 717–732.
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Cones, continued
In particular, we have the effect we have encountered with spheres:

Corollary

Any (fixed-radius, smooth, conical) deformation of a critical circular cone
gives rise to a non-void discrete spectrum of the corresponding Hα,Γ.

For infinite cones the essential spectrum changes, σess(Hα,Γ) = [−1
4α

2,∞),
however, the above spectral inequality holds again.

These results follow from the generalized BS principle in combination with
an inequality related to Cp

L (u) used earlier: for a C 2-smooth loop T ⊂ S2

we put Φf [T ] :=
∫ L

0

∫ L
0 f (|τ(s)− τ(t)|2)dsdt; then we have

Proposition

Let f ∈ C ([0,∞);R) be convex and decreasing. If |T | = |C| = L for some
L ∈ (0, 2π], then isoperimetric inequality Φf [C] < Φf [T ] is valid.

G. Lűko: On the mean length of the chords of a closed curve, Israel J. Math. 4 (1966), 23–32.

J. O’Hara: Energy of knots and conformal geometry, World Scientific 2003.
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Another object of interest: stars

Let us return to planar leaky graphs and consider next star graphs
ΣN = ΣN(L) ⊂ R2, which have N ≥ 2 edges of length L ∈ (0,∞] each,
enumerated in the clockwise manner.

They are characterized by the angles φ = φ(ΣN) = {φ1, φ2, . . . , φN}
between the neighboring edges, φn ∈ (0, 2π) for all n ∈ {1, . . . ,N}
and

∑N
n=1 φn = 2π; by ΓN we denote the star graph with maximum

symmetry, in other words, φn = 2π
N for n = 1, dost,N.

 

The problem can be treated using the same method as before, i.e. a
combination of the generalized BS principle and geometric inequalities.
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Star optimization

Theorem

For L <∞ and any α > 0 we have the relation

max
ΣN(L)

λα1 (ΣN(L)) = λα1 (ΓN(L)) ,

where the maximum is taken over all star graphs with N ≥ 2 edges of; the
equality is achieved if and only if ΣN and ΓN are congruent.

P. Exner, V. Lotoreichik: Optimization of the lowest eigenvalue for leaky star graphs, in Proceedings of the conference
“Mathematical Results in Quantum Physics” (QMath13, Atlanta 2016; F. Bonetto, D. Borthwick, E. Harrell, M. Loss,
eds.), Contemporary Math., vol 717, AMS, Providence, R.I., 2018; pp. 187–196.

The analogous result holds for infinite stars,
L =∞. For illustration we show the ground-
state eigenfunction for Σ6(∞).
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Stars in three dimensions

Albeit technically nontrivial, the previous problem was simple in the
sense that the result was easy to guess.

This would not be the same if we consider an analogue of the star
optimization problem in three dimensions, i.e. for Schrödinger operators
with a singular interaction of codim Γ = 2 supported by a ‘sea urchin’
shape set Γ of N ‘pins’, finite or semi-infinite.

Optimization problem for 3D stars is no
doubt nontrivial. The first analogue coming
to mind is the century-old Thomson problem
about the equilibrium distribution of N point
charges on the surface of a sphere.

J.J. Thomson: On the structure of the atom: an investigation of the stability and periods of oscillation of a number of
corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of
atomic structure, Phil. Mag. 7 (1904), 237–265.
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Inspiration from Thomson problem

Thomson problem is notoriously difficult; recall that a rigorous solution is
known for a few small N cases, for instance, a (computer-assisted) proof
for N = 5 was presented only recently.

R.E. Schwartz: The five-electron case of Thomson’s problem, Experim. Math. 22 (2013), 157–186.

Note also that twenty years ago Stephen Smale included it into the list of
eighteen ‘new Hilbert problems’ for the 21st century.

Attempts to solve it led to generalizations triggering numerous
investigations in algebraic combinatorics, see for instance

H. Cohen, A. Kumar: Universally optimal distribution of point on the sphere, J. AMS 20 (2007), 99–148.

E. Bannai, E. Bannai: A survey on spherical designs and algebraic combinatorics on spheres, Eur. J. Combin. 30 (2009),
1392–1425.

Unfortunately – and this makes a theoretical physicist unhappy – physics is
forgotten at that! They quote, for instance, Tamme’s problem in botany
but not Thomson. The plum-pudding model was wrong, of course, but
still physics was the original inspiration here!
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Universal optimality by Cohen and Kumar
Consider N points {xi}Ni=1 living on the unit sphere S2. They form an
M-spherical design if for any polynomial x 7→ p(x) on R3 of total degree
M the equivalence one has

∫
S2 p(x)dx = 1

N

∑N
i p(xi ) holds.

Let m be the number of different inner products between distinct {xi}Ni=1.
They form a sharp configuration if it is 2m−1 spherical design.

By [Cohen-Kumar’07, loc.cit.] sharp configurations are universally optimal
meaning that they minimize any potential energy f : [0, 4]→ R which is
completely monotonous, i.e. it satisfies (−1)k f (k) ≥ 0 for all k ≥ 0. In
three dimensions there are five sharp configurations:

N = 2, antipodal points
N = 3, simplex with inner product −1/2,
N = 4, tetrahedron – simplex with inner product −1/3,
N = 6, octahedron – cross polytope with inner products −1, 0,
N = 12, icosahedron with inner products −1,±1/

√
5.

Remark: The remaining Platonic solids, cube and dodekahedron, do not
qualify for universality having m=3 and 4, respectively. Note that they
do not represent Thomson problem solutions either!
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Application to star leaky graphs

One may wonder what has the mentioned minimization problem to do
with the maximization of the ground state eigenvalues

. The answer is
that, as in the previously addressed cases, the problem is equivalent to
minimization of the (norm of) the Birman-Schwinger operator. We have

Lemma

Consider an N-arm star with edges of length L ∈ (0,∞] determined by
unit vectors {γ̄i}Ni=1, and let {σ̄i}Ni=1 corresponds to a sharp-configuration
star. Then we have∑

i ,j i 6=j

Tκ;s,t(|γ̄i − γ̄j |2) ≥
∑
i ,j i 6=j

Tκ;s,t(|σ̄i − σ̄j |2).

for any s, t ∈ [0, L] and the inequality is sharp unless the two stars are

congruent. Here Tκ;s,t(x) := e−κ
√
a+bx

4π
√
a+bx

with a = (s − t)2 and b = st
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Application to star leaky graphs, continued

Next we use the fact that the largest eigenvalue of the Birman-Schwinger
operator corresponding to a sharp-configuration star has the maximum
symmetry, f̃σ = (fσ, ..., fσ) ∈

⊕N
1 L2([0, L]).

Then supQκ,γ ≥ (Qκ,γ f̃σ, f̃σ) ≥ supQκ,σ holds according to the above
lemma, which allows us to make the following conclusion:

Theorem

Assume that N ∈ {2, 3, 4, 6, 12}, then the ground state energy of the
N-arm leaky star assumes the unique maximum for γ = σ, where σ is
the corresponds to the appropriate sharp configuration listed above.

P.E., S. Kondej: Ground state optimization for leaky star graphs in dimension three, Lett. Math. Phys. 110 (2020),
735–751.

For other values of N the problem remains open; note that for a finite star
the solutions may depend on the coupling constant α.
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What to bring home from Lecture V

In the strong coupling asymptotic regime leaky quantum structures
behave as having effectively a lower dimension.

The boundaries of the interaction support have in this regime the
Dirichlet character.

Weakly bound states due to geometric perturbations behave like
regular Schrödinger operators, powerlike for curves, exponential
for surfaces.

If the geometry of the interaction support is essentially
two-dimensional, the ground state is typically maximized by
configurations of maximum symmetry.

If it is truly three-dimensional, on the other hand, the optimization
problem is considerably more involved.
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