Constrained quantum dynamics

Pavel Exner

Doppler Institute
for Mathematical Physics and Applied Mathematics Prague

With thanks to all my collaborators

A minicourse at the 2nd International Summer School on Advanced Quantum Mechanics Prague, September 2-11, 2021

Spectrum vs. parameter values and geometry

We have encountered many situations when Hamiltonians governing a guided dynamics had a discrete spectrum. We discussed mostly its existence and sometimes also cardinality, now we are going to take a closer look at the dependence of the eigenvalues on the parameters involved and the problem geometry addressing the following questions:

Spectrum vs. parameter values and geometry

We have encountered many situations when Hamiltonians governing a guided dynamics had a discrete spectrum. We discussed mostly its existence and sometimes also cardinality, now we are going to take a closer look at the dependence of the eigenvalues on the parameters involved and the problem geometry addressing the following questions:

- The discussion of leaky structures in the previous lecture suggests that their spectral properties depend on the strength of the attractive singular interaction. We have seen, for instance, that weak coupling depends on the dimension of the system.

Spectrum vs. parameter values and geometry

We have encountered many situations when Hamiltonians governing a guided dynamics had a discrete spectrum. We discussed mostly its existence and sometimes also cardinality, now we are going to take a closer look at the dependence of the eigenvalues on the parameters involved and the problem geometry addressing the following questions:

- The discussion of leaky structures in the previous lecture suggests that their spectral properties depend on the strength of the attractive singular interaction. We have seen, for instance, that weak coupling depends on the dimension of the system.
- It is even more important to analyze the opposite extremum, the asymptotic behavior in the strong-coupling regime, $\alpha \rightarrow \infty$.

Spectrum vs. parameter values and geometry

We have encountered many situations when Hamiltonians governing a guided dynamics had a discrete spectrum. We discussed mostly its existence and sometimes also cardinality, now we are going to take a closer look at the dependence of the eigenvalues on the parameters involved and the problem geometry addressing the following questions:

- The discussion of leaky structures in the previous lecture suggests that their spectral properties depend on the strength of the attractive singular interaction. We have seen, for instance, that weak coupling depends on the dimension of the system.
- It is even more important to analyze the opposite extremum, the asymptotic behavior in the strong-coupling regime, $\alpha \rightarrow \infty$.
- Another question concerns the asymptotic behavior in the situation when the geometric perturbation of the 'trivial' system is gentle.

Spectrum vs. parameter values and geometry

We have encountered many situations when Hamiltonians governing a guided dynamics had a discrete spectrum. We discussed mostly its existence and sometimes also cardinality, now we are going to take a closer look at the dependence of the eigenvalues on the parameters involved and the problem geometry addressing the following questions:

- The discussion of leaky structures in the previous lecture suggests that their spectral properties depend on the strength of the attractive singular interaction. We have seen, for instance, that weak coupling depends on the dimension of the system.
- It is even more important to analyze the opposite extremum, the asymptotic behavior in the strong-coupling regime, $\alpha \rightarrow \infty$.
- Another question concerns the asymptotic behavior in the situation when the geometric perturbation of the 'trivial' system is gentle.
- A trademark topic of spectral geometry are relations between the spectrum and the related shape; in the present context we find a number of such problems.

Strong δ interaction asymptotics

If the attraction is strong the motion is strongly localized transversally and the geometry of Γ can be manifested in the discrete spectrum of the operator $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$.

Strong δ interaction asymptotics

If the attraction is strong the motion is strongly localized transversally and the geometry of Γ can be manifested in the discrete spectrum of the operator $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$.
Let us start with the simplest situation of a curve in the plane, avoiding first various 'dangerous' situations that may occur, specifically angles, cusps, self-intersections, and ends. Then we have the following result:

Strong δ interaction asymptotics

If the attraction is strong the motion is strongly localized transversally and the geometry of Γ can be manifested in the discrete spectrum of the operator $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$.
Let us start with the simplest situation of a curve in the plane, avoiding first various 'dangerous' situations that may occur, specifically angles, cusps, self-intersections, and ends. Then we have the following result:

Theorem

Let Γ be a C^{4} smooth curve in \mathbb{R}^{2} without ends, either a closed loop or infinite, asymtotically straight and without 'near crossings'. In the limit $\alpha \rightarrow \infty$ the jth eigenvalue of $H_{\alpha, \Gamma}$ behaves as

$$
\lambda_{j}(\alpha)=-\frac{\alpha^{2}}{4}+\mu_{j}+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right)
$$

where μ_{j} is the j th eigenvalue of $S_{\Gamma}=-\frac{\mathrm{d}^{2}}{d s^{2}}-\frac{1}{4} \kappa(s)^{2}$ on $L^{2}(0,|\Gamma|)$ or $L^{2}(\mathbb{R})$, respectively, where κ is curvature of Γ.
P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a strong δ-interaction on a loop, J. Geom. Phys. 41 (2002), 344-358.

Strong δ interaction asymptotics

Note that the restriction made were essential. Consider two halflines meeting at a non-straight angle. We know that $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right) \neq \emptyset$ and in view of the self-similarity of Γ, a simple scaling argument shows that its eigenvalues behave as $c \alpha^{2}$ with some $c<-\frac{1}{4}$ with respect to α.

Strong δ interaction asymptotics

Note that the restriction made were essential. Consider two halflines meeting at a non-straight angle. We know that $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right) \neq \emptyset$ and in view of the self-similarity of Γ, a simple scaling argument shows that its eigenvalues behave as $c \alpha^{2}$ with some $c<-\frac{1}{4}$ with respect to α.
Furthermore, if curve Γ has a cusp of degree $p>1$, that is, it is locally homothetic to the graph of the function $f(x)=|x|^{1 / p}$, the strong coupling asymptotics of the j th eigenvalue is

$$
\lambda_{j}(\alpha)=-\alpha^{2}+c_{j}(p) \alpha^{\frac{6}{p+2}}+\mathcal{O}\left(\alpha^{\frac{6}{p+2}-\eta_{p}}\right),
$$

where $c_{j}(p)$ and η_{p} are (explicitly known) positive constants.
B. Flamencourt, K. Pankrashkin: Strong coupling asymptotics for δ-interactions supported by curves with cusps, J. Math. Anal. Appl. 491 (2020), 124287.

Strong δ interaction asymptotics

Note that the restriction made were essential. Consider two halflines meeting at a non-straight angle. We know that $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right) \neq \emptyset$ and in view of the self-similarity of Γ, a simple scaling argument shows that its eigenvalues behave as $c \alpha^{2}$ with some $c<-\frac{1}{4}$ with respect to α.
Furthermore, if curve Γ has a cusp of degree $p>1$, that is, it is locally homothetic to the graph of the function $f(x)=|x|^{1 / p}$, the strong coupling asymptotics of the j th eigenvalue is

$$
\lambda_{j}(\alpha)=-\alpha^{2}+c_{j}(p) \alpha^{\frac{6}{p+2}}+\mathcal{O}\left(\alpha^{\frac{6}{p+2}-\eta_{p}}\right)
$$

where $c_{j}(p)$ and η_{p} are (explicitly known) positive constants.
B. Flamencourt, K. Pankrashkin: Strong coupling asymptotics for δ-interactions supported by curves with cusps, J. Math. Anal. Appl. 491 (2020), 124287.

Under similar hypotheses on smoothness and absence of boundaries, the claim extends to higher dimensions, specifically

- for a curve in \mathbb{R}^{2} we replace $-\frac{1}{4} \alpha^{2}$ by $\epsilon_{\alpha}=-4 \mathrm{e}^{2(-2 \pi \alpha+\psi(1))}$.
P.E., S. Kondej: Strong-coupling asymptotic expansion for Schrödinger operators with a singular interaction supported by a curve in \mathbb{R}^{3}, Rev. Math. Phys. 16 (2004), 559-582.

Strong δ interaction asymptotics

- For a surface in \mathbb{R}^{3} we replace the above S by $S_{\Gamma}=-\Delta_{\Gamma}+K-M^{2}$, where $-\Delta_{\Gamma}$ is Laplace-Beltrami operator on Γ and K, M, respectively, are the corresponding Gauss and mean curvatures.
P.E., S. Kondej: Bound states due to a strong δ interaction supported by a curved surface, J. Phys. A: Math. Gen. 36 (2003), 443-457.

Strong δ interaction asymptotics

- For a surface in \mathbb{R}^{3} we replace the above S by $S_{\Gamma}=-\Delta_{\Gamma}+K-M^{2}$, where $-\Delta_{\Gamma}$ is Laplace-Beltrami operator on Γ and K, M, respectively, are the corresponding Gauss and mean curvatures.

In a similar way one can treat periodic systems using the Blach (Floquet, Gel'fand) decomposition: there is a unitary \mathcal{U} such that $\mathcal{U} H_{\alpha, \Gamma} \mathcal{U}^{-1}=$ $\int_{[0,2 \pi)^{r}}^{\oplus} H_{\alpha, \theta} \mathrm{d} \theta$ and $\sigma\left(H_{\alpha, \Gamma}\right)=\bigcup_{[0,2 \pi)^{r}} \sigma\left(H_{\alpha, \theta}\right)$.

Strong δ interaction asymptotics

- For a surface in \mathbb{R}^{3} we replace the above S by $S_{\Gamma}=-\Delta_{\Gamma}+K-M^{2}$, where $-\Delta_{\Gamma}$ is Laplace-Beltrami operator on Γ and K, M, respectively, are the corresponding Gauss and mean curvatures.

In a similar way one can treat periodic systems using the Blach (Floquet, Gel'fand) decomposition: there is a unitary \mathcal{U} such that $\mathcal{U} H_{\alpha, \Gamma} \mathcal{U}^{-1}=$ $\int_{[0,2 \pi)^{r}}^{\oplus} H_{\alpha, \theta} \mathrm{d} \theta$ and $\sigma\left(H_{\alpha, \Gamma}\right)=\bigcup_{[0,2 \pi)^{r}} \sigma\left(H_{\alpha, \theta}\right)$.

It is important to choose the periodic cells \mathcal{C} of the space and $\Gamma_{\mathcal{C}}$ of the manifold consistently, $\Gamma_{\mathcal{C}}=\Gamma \cap \mathcal{C}$. Note that $\Gamma_{\mathcal{C}}$ is not necessarily a 'straight slab', even for $d=2$, and for $d=3$ it
 need not be simply connected.

Periodic manifold asymptotics

Theorem
Let Γ be a C^{4}-smooth r-periodic manifold without boundary. The strong coupling asymptotic behavior of the j th Bloch eigenvalue is

$$
\lambda_{j}(\alpha, \theta)=-\frac{1}{4} \alpha^{2}+\mu_{j}(\theta)+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right) \quad \text { as } \quad \alpha \rightarrow \infty
$$

for $\operatorname{codim} \Gamma=1$

Periodic manifold asymptotics

Theorem
Let Γ be a C^{4}-smooth r-periodic manifold without boundary. The strong coupling asymptotic behavior of the j th Bloch eigenvalue is

$$
\lambda_{j}(\alpha, \theta)=-\frac{1}{4} \alpha^{2}+\mu_{j}(\theta)+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right) \quad \text { as } \quad \alpha \rightarrow \infty
$$

for $\operatorname{codim} \Gamma=1$ and

$$
\lambda_{j}(\alpha, \theta)=\epsilon_{\alpha}+\mu_{j}(\theta)+\mathcal{O}\left(\mathrm{e}^{\pi \alpha}\right) \quad \text { as } \quad \alpha \rightarrow-\infty
$$

for codim $\Gamma=2$, where $\mu_{j}(\theta)$ is the j th eigenvalue of the appropriate comparison operator indicated above with Bloch boundary conditions

Periodic manifold asymptotics

Theorem

Let Γ be a C^{4}-smooth r-periodic manifold without boundary. The strong coupling asymptotic behavior of the jth Bloch eigenvalue is

$$
\lambda_{j}(\alpha, \theta)=-\frac{1}{4} \alpha^{2}+\mu_{j}(\theta)+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right) \quad \text { as } \quad \alpha \rightarrow \infty
$$

for $\operatorname{codim} \Gamma=1$ and

$$
\lambda_{j}(\alpha, \theta)=\epsilon_{\alpha}+\mu_{j}(\theta)+\mathcal{O}\left(\mathrm{e}^{\pi \alpha}\right) \quad \text { as } \quad \alpha \rightarrow-\infty
$$

for codim $\Gamma=2$, where $\mu_{j}(\theta)$ is the j th eigenvalue of the appropriate comparison operator indicated above with Bloch boundary conditions.
The error terms are uniform w.r.t. θ.

[^0]
Periodic manifold asymptotics

Theorem

Let Γ be a C^{4}-smooth r-periodic manifold without boundary. The strong coupling asymptotic behavior of the j th Bloch eigenvalue is

$$
\lambda_{j}(\alpha, \theta)=-\frac{1}{4} \alpha^{2}+\mu_{j}(\theta)+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right) \quad \text { as } \quad \alpha \rightarrow \infty
$$

for $\operatorname{codim} \Gamma=1$ and

$$
\lambda_{j}(\alpha, \theta)=\epsilon_{\alpha}+\mu_{j}(\theta)+\mathcal{O}\left(\mathrm{e}^{\pi \alpha}\right) \quad \text { as } \quad \alpha \rightarrow-\infty
$$

for codim $\Gamma=2$, where $\mu_{j}(\theta)$ is the j th eigenvalue of the appropriate comparison operator indicated above with Bloch boundary conditions.
The error terms are uniform w.r.t. θ.P.E., S. Kondej: Strong-coupling asymptotic expansion for Schrödinger operators with a singular interaction supported by a curve in \mathbb{R}^{3}, Rev. Math. Phys. 16 (2004), 559-582.
}

Corollary
 If $\operatorname{dim} \Gamma=1$ and coupling is strong enough, $\boldsymbol{H}_{\alpha, \Gamma}$ has open spectral gaps.

K. Yoshitomi: Band gap of the spectrum in periodically curved quantum waveguides, J. Diff. Eqs 142 (1998), 123-166.

Strong δ interactions: sketch of the argument

 Three essential ingredients are involved. The first is Dirichlet-Neumann bracketing imposed at the boundary Σ_{a} of the tubular neighborhood of Γ of radius/halfwidth a, here sketched for a loop in \mathbb{R}^{3}.

Strong δ interactions: sketch of the argument

Three essential ingredients are involved. The first is Dirichlet-Neumann bracketing imposed at the boundary Σ_{a} of the tubular neighborhood of Γ of radius/halfwidth a, here sketched for a loop in \mathbb{R}^{3}.

This squeezes $H_{\alpha, \Gamma}$ between a pair of 'disconnected' operators, and since we are interested in negative eigenvalues, we have to care about the tube part only because the Dirichlet/Neumann Laplacian in the remaining part of \mathbb{R}^{d} is positive.

Strong δ interactions: sketch of the argument

Three essential ingredients are involved. The first is Dirichlet-Neumann bracketing imposed at the boundary Σ_{a} of the tubular neighborhood of Γ of radius/halfwidth a, here sketched for a loop in \mathbb{R}^{3}.

This squeezes $H_{\alpha, \Gamma}$ between a pair of 'disconnected' operators, and since we are interested in negative eigenvalues, we have to care about the tube part only because the Dirichlet/Neumann Laplacian in the remaining part of \mathbb{R}^{d} is positive.

Then we use inside the tube the natural curvilinear (Fermi, parallel) coordinates mentioned before, and estimate the coefficients to squeeze $H_{\alpha, \Gamma}$ between operators with separated variables.

Strong δ interactions: sketch of the argument

Three essential ingredients are involved. The first is Dirichlet-Neumann bracketing imposed at the boundary Σ_{a} of the tubular neighborhood of Γ of radius/halfwidth a, here sketched for a loop in \mathbb{R}^{3}.

This squeezes $H_{\alpha, \Gamma}$ between a pair of 'disconnected' operators, and since we are interested in negative eigenvalues, we have to care about the tube part only because the Dirichlet/Neumann Laplacian in the remaining part of \mathbb{R}^{d} is positive.

Then we use inside the tube the natural curvilinear (Fermi, parallel) coordinates mentioned before, and estimate the coefficients to squeeze $H_{\alpha, \Gamma}$ between operators with separated variables. For a curve in \mathbb{R}^{2}, e.g. their longitudinal parts are

$$
U_{a}^{ \pm}=-\left(1 \mp a\|\kappa\|_{\infty}\right)^{-2} \frac{\mathrm{~d}^{2}}{\mathrm{ds} s^{2}}+V_{ \pm}(s)
$$

with PBC in the case of a loop, where $V_{-}(s) \leq \frac{1}{4} \kappa^{2}(s) \leq V_{+}(s)$ with an $\mathcal{O}(a)$ error. In other words, the operators $U_{a}^{ \pm}$are $\mathcal{O}(a)$ close to S_{Γ}.

Strong δ interactions: sketch of the argument

On the other hand, the transverse operators are related to the forms

$$
t_{a, \alpha}^{+}[f]=\int_{-a}^{a}\left|f^{\prime}(u)\right|^{2} \mathrm{~d} u-\alpha|f(0)|^{2}
$$

and $t_{a, \alpha}^{-}[f]=t_{a, \alpha}^{-}[f]-\|k\|_{\infty}\left(|f(a)|^{2}+|f(-a)|^{2}\right)$ defined on the Sobolev spaces $W_{0}^{1,2}(-a, a)$ and $W^{1,2}(-a, a)$, respectively

Strong δ interactions: sketch of the argument

On the other hand, the transverse operators are related to the forms

$$
t_{a, \alpha}^{+}[f]=\int_{-a}^{a}\left|f^{\prime}(u)\right|^{2} \mathrm{~d} u-\alpha|f(0)|^{2}
$$

and $t_{a, \alpha}^{-}[f]=t_{a, \alpha}^{-}[f]-\|k\|_{\infty}\left(|f(a)|^{2}+|f(-a)|^{2}\right)$ defined on the Sobolev spaces $W_{0}^{1,2}(-a, a)$ and $W^{1,2}(-a, a)$, respectively. For large α the presence of the boundaries cause an exponentially small error:

Lemma

There is a positive c_{N} such that $T_{\alpha, a}^{ \pm}$has for α large enough a single negative eigenvalue $\kappa_{\alpha, a}^{ \pm}$satisfying

$$
-\frac{\alpha^{2}}{4}\left(1+c_{N} \mathrm{e}^{-\alpha a / 2}\right)<\kappa_{\alpha, a}^{-}<-\frac{\alpha^{2}}{4}<\kappa_{\alpha, a}^{+}<-\frac{\alpha^{2}}{4}\left(1-8 \mathrm{e}^{-\alpha a / 2}\right)
$$

Strong δ interactions: sketch of the argument

On the other hand, the transverse operators are related to the forms

$$
t_{a, \alpha}^{+}[f]=\int_{-a}^{a}\left|f^{\prime}(u)\right|^{2} \mathrm{~d} u-\alpha|f(0)|^{2}
$$

and $t_{a, \alpha}^{-}[f]=t_{a, \alpha}^{-}[f]-\|k\|_{\infty}\left(|f(a)|^{2}+|f(-a)|^{2}\right)$ defined on the Sobolev spaces $W_{0}^{1,2}(-a, a)$ and $W^{1,2}(-a, a)$, respectively. For large α the presence of the boundaries cause an exponentially small error:

Lemma

There is a positive c_{N} such that $T_{\alpha, a}^{ \pm}$has for α large enough a single negative eigenvalue $\kappa_{\alpha, a}^{ \pm}$satisfying

$$
-\frac{\alpha^{2}}{4}\left(1+c_{N} \mathrm{e}^{-\alpha a / 2}\right)<\kappa_{\alpha, a}^{-}<-\frac{\alpha^{2}}{4}<\kappa_{\alpha, a}^{+}<-\frac{\alpha^{2}}{4}\left(1-8 \mathrm{e}^{-\alpha a / 2}\right)
$$

Finally, we relate a to α by choosing $a=6 \alpha^{-1} \ln \alpha$ which yields the result.

Strong δ interactions: sketch of the argument

On the other hand, the transverse operators are related to the forms

$$
t_{a, \alpha}^{+}[f]=\int_{-a}^{a}\left|f^{\prime}(u)\right|^{2} \mathrm{~d} u-\alpha|f(0)|^{2}
$$

and $t_{a, \alpha}^{-}[f]=t_{a, \alpha}^{-}[f]-\|k\|_{\infty}\left(|f(a)|^{2}+|f(-a)|^{2}\right)$ defined on the Sobolev spaces $W_{0}^{1,2}(-a, a)$ and $W^{1,2}(-a, a)$, respectively. For large α the presence of the boundaries cause an exponentially small error:

Lemma

There is a positive c_{N} such that $T_{\alpha, a}^{ \pm}$has for α large enough a single negative eigenvalue $\kappa_{\alpha, a}^{ \pm}$satisfying

$$
-\frac{\alpha^{2}}{4}\left(1+c_{N} \mathrm{e}^{-\alpha a / 2}\right)<\kappa_{\alpha, a}^{-}<-\frac{\alpha^{2}}{4}<\kappa_{\alpha, a}^{+}<-\frac{\alpha^{2}}{4}\left(1-8 \mathrm{e}^{-\alpha a / 2}\right)
$$

Finally, we relate a to α by choosing $a=6 \alpha^{-1} \ln \alpha$ which yields the result. In the other cases the proof is analogous. If $\operatorname{codim} \Gamma=2$ the transverse part is the Dirichlet/Neumann disc of radius r with the point interaction in the center; the error is again exponentially small as $\alpha \rightarrow-\infty$.

Curves with ends

We have seen that the described method yields for finite or semifinite curves gives the asymptotics for the number of bound states, but fails to do that for individual eigenvalues - the difference between Dirichlet and Neumann conditions imposed on the comparison operator is too big.

Curves with ends

We have seen that the described method yields for finite or semifinite curves gives the asymptotics for the number of bound states, but fails to do that for individual eigenvalues - the difference between Dirichlet and Neumann conditions imposed on the comparison operator is too big.
One conjectures that the 'correct' boundary conditions are Dirichlet. For a finite planar curve this is indeed the case:

Curves with ends

We have seen that the described method yields for finite or semifinite curves gives the asymptotics for the number of bound states, but fails to do that for individual eigenvalues - the difference between Dirichlet and Neumann conditions imposed on the comparison operator is too big.
One conjectures that the 'correct' boundary conditions are Dirichlet. For a finite planar curve this is indeed the case:

Theorem (E-Pankrashkin'14)

Suppose Γ is a C^{4} smooth open arc in \mathbb{R}^{2} of length L with regular ends; then the strong-coupling limit of the j th negative eigenvalue of $H_{\alpha, \Gamma}$ is

$$
\lambda_{j}(\alpha)=-\frac{1}{4} \alpha^{2}+\mu_{j}+\mathcal{O}\left(\frac{\ln \alpha}{\alpha}\right) \quad \text { as } \quad \alpha \rightarrow+\infty
$$

where μ_{j} is the j th eigenvalue of the operator $-\frac{\mathrm{d}^{2}}{\mathrm{ds}}-\frac{1}{4} \kappa(s)^{2}$ on $L^{2}(0, L)$ with Dirichlet b.c., where $\kappa(s)$ is as before the signed curvature of Γ at the point $s \in(0, L)$.
P.E., K. Pankrashkin: Strong coupling asymptotics for a singular Schrödinger operator with an interaction supported by an open arc, Comm. PDE 39 (2014), 193-212.

Curves with ends: sketch of the argument

We use again bracketing estimates but now they have to be modified. The upper (Dirichlet) one works as before, while for the lower (Neumann) one we employ the fact that the arc Γ has by assumption regular ends, meaning that it can be extended smoothly in the vicinity of its endpoints.

Curves with ends: sketch of the argument

We use again bracketing estimates but now they have to be modified. The upper (Dirichlet) one works as before, while for the lower (Neumann) one we employ the fact that the arc Γ has by assumption regular ends, meaning that it can be extended smoothly in the vicinity of its endpoints.
Recall the generalized Birman-Schwinget principle; it allows us to express solution to $H_{\alpha, \Gamma} \psi_{j}=-\mu_{j}^{2} \psi_{j}$ as $\psi_{j}(x)=\frac{1}{2 \pi} \int_{\Gamma} K_{0}\left(\mu_{j}|x-\Gamma(s)|\right) \phi_{j}(s) \mathrm{d} s$, in other words, as convolutions of the Laplacian Green's function with the corresponding BS eigenfunctions, $\mathcal{R}_{\alpha, \Gamma}^{\mu_{j}} \phi_{j}=\phi_{j}$.

Curves with ends: sketch of the argument

We use again bracketing estimates but now they have to be modified. The upper (Dirichlet) one works as before, while for the lower (Neumann) one we employ the fact that the arc Γ has by assumption regular ends, meaning that it can be extended smoothly in the vicinity of its endpoints.

Recall the generalized Birman-Schwinget principle; it allows us to express solution to $H_{\alpha, \Gamma} \psi_{j}=-\mu_{j}^{2} \psi_{j}$ as $\psi_{j}(x)=\frac{1}{2 \pi} \int_{\Gamma} K_{0}\left(\mu_{j}|x-\Gamma(s)|\right) \phi_{j}(s) \mathrm{d} s$, in other words, as convolutions of the Laplacian Green's function with the corresponding BS eigenfunctions, $\mathcal{R}_{\alpha, \Gamma}^{\mu_{j}} \phi_{j}=\phi_{j}$.

We choose an 'extended' tubular neighborhood, at each endpoint longer by $a:=\frac{6}{\alpha} \ln \alpha$. Now we loose the advantage of variable separation but with the help of the above formula one can check that the Neumann condition imposed at this distance from the curve has an effect which can be included into the error term.

An extended neighbourhood

Curves with ends, $\operatorname{codim} \Gamma=2$

Using a similar argument, just technically a bit more involved, one can obtain asymptotic results for an arc in \mathbb{R}^{3} :

Theorem
Let $H_{\alpha, \Gamma}$ correspond to a finite, non-closed C^{4} smooth curve in \mathbb{R}^{3} with regular ends having length L and the global Frenet frame.

Curves with ends, $\operatorname{codim} \Gamma=2$

Using a similar argument, just technically a bit more involved, one can obtain asymptotic results for an arc in \mathbb{R}^{3} :

Theorem

Let $H_{\alpha, \Gamma}$ correspond to a finite, non-closed C^{4} smooth curve in \mathbb{R}^{3} with regular ends having length L and the global Frenet frame.
(i) The cardinality of the discrete spectrum behaves asymptotically as

$$
\sharp \sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right)=\frac{L}{\pi}\left(-\epsilon_{\alpha}\right)^{1 / 2}\left(1+\mathcal{O}\left(\mathrm{e}^{\pi \alpha}\right)\right) \quad \text { as } \quad \alpha \rightarrow-\infty .
$$

Curves with ends, $\operatorname{codim} \Gamma=2$

Using a similar argument, just technically a bit more involved, one can obtain asymptotic results for an arc in \mathbb{R}^{3} :

Theorem

Let $H_{\alpha, \Gamma}$ correspond to a finite, non-closed C^{4} smooth curve in \mathbb{R}^{3} with regular ends having length L and the global Frenet frame.
(i) The cardinality of the discrete spectrum behaves asymptotically as

$$
\sharp \sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right)=\frac{L}{\pi}\left(-\epsilon_{\alpha}\right)^{1 / 2}\left(1+\mathcal{O}\left(\mathrm{e}^{\pi \alpha}\right)\right) \quad \text { as } \quad \alpha \rightarrow-\infty .
$$

(ii) Furthermore, the j th eigenvalue of $H_{\alpha, \Gamma}$ has the expansion

$$
\lambda_{j}\left(H_{\alpha, \Gamma}\right)=\epsilon_{\alpha}+\mu_{j}+\mathcal{O}\left(\mathrm{e}^{\pi \alpha}\right) \quad \text { for } \quad \alpha \rightarrow-\infty
$$

where μ_{j} corresponds to same the operator S on $L^{2}(0, L)$ as above.

[^1]
Surfaces with a boundary

Let $\Gamma \subset \mathbb{R}^{3}$ be now a C^{4}-smooth relatively compact orientable surface with a compact Lipschitz boundary $\partial \Gamma$. In addition, we suppose that Γ can be extended through the boundary, in other words, that there exists a larger C^{4}-smooth surface Γ_{2} such that $\bar{\Gamma} \subset \Gamma_{2}$.

Surfaces with a boundary

Let $\Gamma \subset \mathbb{R}^{3}$ be now a C^{4}-smooth relatively compact orientable surface with a compact Lipschitz boundary $\partial \Gamma$. In addition, we suppose that Γ can be extended through the boundary, in other words, that there exists a larger C^{4}-smooth surface Γ_{2} such that $\bar{\Gamma} \subset \Gamma_{2}$.
We consider again the comparison operator $S_{\Gamma}=-\Delta_{\Gamma}^{D}+K-M^{2}$, where $-\Delta_{\Gamma}^{D}$ is Laplace-Beltrami operator on Γ, now with Dirichlet condition at $\partial \Gamma$, and K, M, respectively, are the Gauss and mean curvatures of Γ

Surfaces with a boundary

Let $\Gamma \subset \mathbb{R}^{3}$ be now a C^{4}-smooth relatively compact orientable surface with a compact Lipschitz boundary $\partial \Gamma$. In addition, we suppose that Γ can be extended through the boundary, in other words, that there exists a larger C^{4}-smooth surface Γ_{2} such that $\bar{\Gamma} \subset \Gamma_{2}$.
We consider again the comparison operator $S_{\Gamma}=-\Delta_{\Gamma}^{D}+K-M^{2}$, where $-\Delta_{\Gamma}^{D}$ is Laplace-Beltrami operator on Γ, now with Dirichlet condition at $\partial \Gamma$, and K, M, respectively, are the Gauss and mean curvatures of Γ. We denote eigenvalues of this operator as $\mu_{j}^{D}, j \in \mathbb{N}$, then we have

Theorem

Let Γ be as above, then for any fixed $j \in \mathbb{N}$ we have

$$
\lambda_{j}\left(H_{\alpha, \Gamma}\right)=-\frac{\alpha^{2}}{4}+\mu_{j}^{D}+o(1) \quad \text { as } \quad \alpha \rightarrow \infty
$$

If, in addition, Γ has a C^{2} boundary, then the remainder estimate can be replaced by $\mathcal{O}\left(\alpha^{-1} \ln \alpha\right)$.
J. Dittrich, P.E., Ch. Kühn, K. Pankrashkin: On eigenvalue asymptotics for strong δ-interactions supported by surfaces with boundaries, Asympt. Anal. 97 (2016), 1-25.

Another asymptotics: slightly bent curves

Let us turn to the other asymptotic problem mentioned in the opening. The simplest example is a broken line $\boldsymbol{\Gamma}=\Gamma_{\beta}$ with a small angle β.

We keep α fixed and denote $H_{\Gamma_{\beta}}:=H_{\alpha, \Gamma_{\beta}}$. We know that this operator has eigenvalues, a single one for small β.

Another asymptotics: slightly bent curves

Let us turn to the other asymptotic problem mentioned in the opening. The simplest example is a broken line $\boldsymbol{\Gamma}=\boldsymbol{\Gamma}_{\beta}$ with a small angle β.

We keep α fixed and denote $H_{\Gamma_{\beta}}:=H_{\alpha, \Gamma_{\beta}}$. We know that this operator has eigenvalues, a single one for small β.
For slightly bent Dirichlet tubes one derives using BS principle that the gap is proportional to the fourth power of the bending angle; led by this analogy we conjecture that

$$
\lambda\left(H_{\Gamma_{\beta}}\right)=-\frac{1}{4} \alpha^{2}+a \beta^{4}+o\left(\beta^{4}\right)
$$

holds with some constant $a<0$ as $\beta \rightarrow 0+$.

Another asymptotics: slightly bent curves

Let us turn to the other asymptotic problem mentioned in the opening. The simplest example is a broken line $\boldsymbol{\Gamma}=\boldsymbol{\Gamma}_{\beta}$ with a small angle β.

We keep α fixed and denote $H_{\Gamma_{\beta}}:=H_{\alpha, \Gamma_{\beta}}$. We know that this operator has eigenvalues, a single one for small β.
For slightly bent Dirichlet tubes one derives using BS principle that the gap is proportional to the fourth power of the bending angle; led by this analogy we conjecture that

$$
\lambda\left(H_{\Gamma_{\beta}}\right)=-\frac{1}{4} \alpha^{2}+a \beta^{4}+o\left(\beta^{4}\right)
$$

holds with some constant $a<0$ as $\beta \rightarrow 0+$.
The question now is (a) what is the coefficient a, and

Another asymptotics: slightly bent curves

Let us turn to the other asymptotic problem mentioned in the opening. The simplest example is a broken line $\boldsymbol{\Gamma}=\boldsymbol{\Gamma}_{\beta}$ with a small angle β.

We keep α fixed and denote $H_{\Gamma_{\beta}}:=H_{\alpha, \Gamma_{\beta}}$. We know that this operator has eigenvalues, a single one for small β.
For slightly bent Dirichlet tubes one derives using BS principle that the gap is proportional to the fourth power of the bending angle; led by this analogy we conjecture that

$$
\lambda\left(H_{\Gamma_{\beta}}\right)=-\frac{1}{4} \alpha^{2}+a \beta^{4}+o\left(\beta^{4}\right)
$$

holds with some constant $a<0$ as $\beta \rightarrow 0+$.
The question now is (a) what is the coefficient a, and (b) what is the class of curves for which such a formula holds.

Weakly bent curves, continued

Let us first specify the class of curves we shall consider: 「 will be a continuous and piecewise C^{2} infinite planar curve without self-intersections parametrized by its arc length, i.e. the graph of a piecewise C^{2}-smooth function $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ such that $|\dot{\Gamma}(s)|=1$. Moreover,

Weakly bent curves, continued

Let us first specify the class of curves we shall consider: Г will be a continuous and piecewise C^{2} infinite planar curve without self-intersections parametrized by its arc length, i.e. the graph of a piecewise C^{2}-smooth function $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ such that $|\dot{\Gamma}(s)|=1$. Moreover,

- there exists a $c \in(0,1)$ such that $\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right| \geq c\left|s-s^{\prime}\right|$ holds for $s, s^{\prime} \in \mathbb{R}$ excluding, in particular, U shapes.
- there are real numbers $s_{1}>s_{2}$ and straight lines $\Sigma_{i}, i=1,2$, such that Γ coincides with Σ_{1} for $s \leq s_{1}$ and with Σ_{2} for $s \geq s_{2}$,
- one-sided limits of $\dot{\Gamma}$ exist at the points where the function $\ddot{\Gamma}$ is discontinuous, i.e. Γ has angles there.

Weakly bent curves, continued

Let us first specify the class of curves we shall consider: Г will be a continuous and piecewise C^{2} infinite planar curve without self-intersections parametrized by its arc length, i.e. the graph of a piecewise C^{2}-smooth function $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ such that $|\dot{\Gamma}(s)|=1$. Moreover,

- there exists a $c \in(0,1)$ such that $\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right| \geq c\left|s-s^{\prime}\right|$ holds for $s, s^{\prime} \in \mathbb{R}$ excluding, in particular, U shapes.
- there are real numbers $s_{1}>s_{2}$ and straight lines $\Sigma_{i}, i=1,2$, such that Γ coincides with Σ_{1} for $s \leq s_{1}$ and with Σ_{2} for $s \geq s_{2}$,
- one-sided limits of $\dot{\Gamma}$ exist at the points where the function $\ddot{\Gamma}$ is discontinuous, i.e. 「 has angles there.
In particular, the signed curvature $\gamma(s)=\dot{\Gamma}_{2}(s) \ddot{\Gamma}_{1}(s)-\dot{\Gamma}_{1}(s) \ddot{\Gamma}_{2}(s)$ is piecewise continuous and the one-sided limits of $\dot{\Gamma}$, i.e. tangent vectors to the curve at the points of discontinuity exist. We denote them as $\Pi=\left\{p_{i}\right\}_{i=1}^{\sharp \Pi}$ and shall speak of them as of vertices. Consequently, Γ consists of $\sharp \Pi+1$ simple arcs or edges, each having as its endpoints one or two of the vertices.

Weakly bent curves, continued

The curvature integral describes bending of the curve. Specifically, the angle between the tangents at the points $\Gamma(s)$ and $\Gamma\left(s^{\prime}\right)$ equals

$$
\phi\left(s, s^{\prime}\right)=\sum_{p_{i} \in\left(s, s^{\prime}\right)} g\left(p_{i}\right)+\int_{\left(s, s^{\prime}\right) \backslash \Pi} \gamma(\zeta) \mathrm{d} \zeta,
$$

where $g\left(p_{i}\right) \in(0, \pi)$ is the exterior angle of the two adjacent edges of Γ meeting at the vertex p_{i}.

Weakly bent curves, continued

The curvature integral describes bending of the curve. Specifically, the angle between the tangents at the points $\Gamma(s)$ and $\Gamma\left(s^{\prime}\right)$ equals

$$
\phi\left(s, s^{\prime}\right)=\sum_{p_{i} \in\left(s, s^{\prime}\right)} g\left(p_{i}\right)+\int_{\left(s, s^{\prime}\right) \backslash \Pi} \gamma(\zeta) \mathrm{d} \zeta,
$$

where $g\left(p_{i}\right) \in(0, \pi)$ is the exterior angle of the two adjacent edges of Γ meeting at the vertex p_{i}.

Alternatively, we can understand $\phi\left(s, s^{\prime}\right)$ as the integral over the interval $\left(s, s^{\prime}\right)$ of $\tilde{\gamma}: \tilde{\gamma}(s)=\gamma(s)+\sum_{p \in \Pi} g(p) \delta(s-p)$. By assumption $\gamma, \tilde{\gamma}$ are compactly supported, thus $\phi\left(s, s^{\prime}\right)$ has the same value for all $s<s_{1}$ and $s_{2}<s^{\prime}$ which we shall call the total bending.

Weakly bent curves, continued

The curvature integral describes bending of the curve. Specifically, the angle between the tangents at the points $\Gamma(s)$ and $\Gamma\left(s^{\prime}\right)$ equals

$$
\phi\left(s, s^{\prime}\right)=\sum_{p_{i} \in\left(s, s^{\prime}\right)} g\left(p_{i}\right)+\int_{\left(s, s^{\prime}\right) \backslash \Pi} \gamma(\zeta) \mathrm{d} \zeta,
$$

where $g\left(p_{i}\right) \in(0, \pi)$ is the exterior angle of the two adjacent edges of Γ meeting at the vertex p_{i}.

Alternatively, we can understand $\phi\left(s, s^{\prime}\right)$ as the integral over the interval $\left(s, s^{\prime}\right)$ of $\tilde{\gamma}: \tilde{\gamma}(s)=\gamma(s)+\sum_{p \in \Pi} g(p) \delta(s-p)$. By assumption $\gamma, \tilde{\gamma}$ are compactly supported, thus $\phi\left(s, s^{\prime}\right)$ has the same value for all $s<s_{1}$ and $s_{2}<s^{\prime}$ which we shall call the total bending.

One can reconstruct Γ from $\tilde{\gamma}$, uniquely up to Euclidean transformations,

$$
\Gamma(s)=\left(\int_{0}^{s} \cos \phi(u, 0) \mathrm{d} u, \int_{0}^{s} \sin \phi(u, 0) \mathrm{d} u\right) .
$$

Weakly bent curves, continued

Now we introduce the one-parameter family of 'scaled' curves Γ_{β},

$$
\left.\Gamma_{\beta}(s)=\left(\int_{0}^{s} \cos \beta \phi(u, 0) \mathrm{d} u, \int_{0}^{s} \sin \beta \phi(u, 0)\right) \mathrm{d} u\right), \quad|\beta| \in(0,1] .
$$

Note that depending on (non)vanishing of the total bending of Γ the limit $\beta \rightarrow 0+$ may have a different meaning, say 'straightening' or 'flattening'.

Weakly bent curves, continued

Now we introduce the one-parameter family of 'scaled' curves Γ_{β},

$$
\left.\Gamma_{\beta}(s)=\left(\int_{0}^{s} \cos \beta \phi(u, 0) \mathrm{d} u, \int_{0}^{s} \sin \beta \phi(u, 0)\right) \mathrm{d} u\right), \quad|\beta| \in(0,1] .
$$

Note that depending on (non)vanishing of the total bending of Γ the limit $\beta \rightarrow 0+$ may have a different meaning, say 'straightening' or 'flattening'.

Next we define an integral operator $A: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ through its kernel,

$$
\mathcal{A}\left(s, s^{\prime}\right):=\frac{\alpha^{4}}{32 \pi} K_{0}^{\prime}\left(\frac{\alpha}{2}\left|s-s^{\prime}\right|\right)\left(\left|s-s^{\prime}\right|^{-1}\left(\int_{s^{\prime}}^{s} \phi\left(s^{\prime \prime}\right) \mathrm{d} s^{\prime \prime}\right)^{2}-\int_{s^{\prime}}^{s} \phi\left(s^{\prime \prime}\right)^{2} \mathrm{~d} s^{\prime \prime}\right)
$$

Weakly bent curves, continued

Now we introduce the one-parameter family of 'scaled' curves Γ_{β},

$$
\left.\Gamma_{\beta}(s)=\left(\int_{0}^{s} \cos \beta \phi(u, 0) \mathrm{d} u, \int_{0}^{s} \sin \beta \phi(u, 0)\right) \mathrm{d} u\right), \quad|\beta| \in(0,1] .
$$

Note that depending on (non)vanishing of the total bending of Γ the limit $\beta \rightarrow 0+$ may have a different meaning, say 'straightening' or 'flattening'.

Next we define an integral operator $A: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ through its kernel,

$$
\mathcal{A}\left(s, s^{\prime}\right):=\frac{\alpha^{4}}{32 \pi} K_{0}^{\prime}\left(\frac{\alpha}{2}\left|s-s^{\prime}\right|\right)\left(\left|s-s^{\prime}\right|^{-1}\left(\int_{s^{\prime}}^{s} \phi\left(s^{\prime \prime}\right) \mathrm{d} s^{\prime \prime}\right)^{2}-\int_{s^{\prime}}^{s} \phi\left(s^{\prime \prime}\right)^{2} \mathrm{~d} s^{\prime \prime}\right)
$$

Lemma

Under the stated assumptions, we have $\int_{\mathbb{R} \times \mathbb{R}} \mathcal{A}\left(s, s^{\prime}\right) \mathrm{d} s \mathrm{~d} s^{\prime}<\infty$.

Weakly bent curves, the result

With these prerequisites, we are finally able to state the sought weakbending result:

Theorem

There is a $\beta_{0}>0$ such that for any $\beta \in\left(-\beta_{0}, 0\right) \cup\left(0, \beta_{0}\right)$ the operator $H_{\Gamma_{\beta}}$ has a unique eigenvalue $\lambda\left(H_{\Gamma_{\beta}}\right)$ which admits the asymptotic expansion

$$
\lambda\left(H_{\Gamma_{\beta}}\right)=-\frac{\alpha^{2}}{4}-\left(\int_{\mathbb{R} \times \mathbb{R}} \mathcal{A}\left(s, s^{\prime}\right) \mathrm{d} s \mathrm{~d} s^{\prime}\right)^{2} \beta^{4}+o\left(\beta^{4}\right) .
$$

\square P.E., S. Kondej: Gap asymptotics in a weakly bent leaky quantum wire, J. Phys. A48 (2015), 495301

Weakly bent curves, the result

With these prerequisites, we are finally able to state the sought weakbending result:

Theorem

There is a $\beta_{0}>0$ such that for any $\beta \in\left(-\beta_{0}, 0\right) \cup\left(0, \beta_{0}\right)$ the operator $H_{\Gamma_{\beta}}$ has a unique eigenvalue $\lambda\left(H_{\Gamma_{\beta}}\right)$ which admits the asymptotic expansion

$$
\lambda\left(H_{\Gamma_{\beta}}\right)=-\frac{\alpha^{2}}{4}-\left(\int_{\mathbb{R} \times \mathbb{R}} \mathcal{A}\left(s, s^{\prime}\right) \mathrm{d} s \mathrm{~d} s^{\prime}\right)^{2} \beta^{4}+o\left(\beta^{4}\right)
$$

P.E., S. Kondej: Gap asymptotics in a weakly bent leaky quantum wire, J. Phys. A48 (2015), 495301

Proof is again based on the generalized Birman-Schwinger principle which we recall here: it says that

$$
-\kappa^{2} \in \sigma_{\mathrm{d}}\left(H_{\Gamma_{\beta}}\right) \quad \Leftrightarrow \quad \operatorname{ker}\left(I-\alpha Q_{\Gamma_{\beta}}(\kappa)\right) \neq \emptyset
$$

where $Q_{\Gamma_{\beta}}(\kappa)$ is the integral operator with the kernel

$$
\mathcal{Q}_{\Gamma_{\beta}}\left(\kappa ; s, s^{\prime}\right)=\frac{1}{2 \pi} K_{0}\left(\kappa\left|\Gamma_{\beta}(s)-\Gamma_{\beta}\left(s^{\prime}\right)\right|\right) ;
$$

Weakly bent curves, the result

With these prerequisites, we are finally able to state the sought weakbending result:

Theorem

There is a $\beta_{0}>0$ such that for any $\beta \in\left(-\beta_{0}, 0\right) \cup\left(0, \beta_{0}\right)$ the operator $H_{\Gamma_{\beta}}$ has a unique eigenvalue $\lambda\left(H_{\Gamma_{\beta}}\right)$ which admits the asymptotic expansion

$$
\lambda\left(H_{\Gamma_{\beta}}\right)=-\frac{\alpha^{2}}{4}-\left(\int_{\mathbb{R} \times \mathbb{R}} \mathcal{A}\left(s, s^{\prime}\right) \mathrm{d} s \mathrm{~d} s^{\prime}\right)^{2} \beta^{4}+o\left(\beta^{4}\right)
$$

P. P.E., S. Kondej: Gap asymptotics in a weakly bent leaky quantum wire, J. Phys. A48 (2015), 495301

Proof is again based on the generalized Birman-Schwinger principle which we recall here: it says that

$$
-\kappa^{2} \in \sigma_{\mathrm{d}}\left(H_{\Gamma_{\beta}}\right) \quad \Leftrightarrow \quad \operatorname{ker}\left(I-\alpha Q_{\Gamma_{\beta}}(\kappa)\right) \neq \emptyset
$$

where $Q_{\Gamma_{\beta}}(\kappa)$ is the integral operator with the kernel

$$
\mathcal{Q}_{\Gamma_{\beta}}\left(\kappa ; s, s^{\prime}\right)=\frac{1}{2 \pi} K_{0}\left(\kappa\left|\Gamma_{\beta}(s)-\Gamma_{\beta}\left(s^{\prime}\right)\right|\right) ;
$$

moreover, we have dim $\operatorname{ker}\left(H_{\Gamma_{\beta}}+\kappa^{2}\right)=\operatorname{dim} \operatorname{ker}\left(I-\alpha Q_{\Gamma_{\beta}}(\kappa)\right)$.

Weakly bent curves, continued

One has to compare with the Birman-Schwinger operator corresponding to the straight line which has the kernel $K_{0}\left(\frac{\kappa}{2}\left|s-s^{\prime}\right|\right)$ in the vicinity of the point $\kappa=\frac{1}{2} \alpha$ corresponding to threshold of the essential spectrum.

Weakly bent curves, continued

One has to compare with the Birman-Schwinger operator corresponding to the straight line which has the kernel $K_{0}\left(\frac{\kappa}{2}\left|s-s^{\prime}\right|\right)$ in the vicinity of the point $\kappa=\frac{1}{2} \alpha$ corresponding to threshold of the essential spectrum.

Let us return to the broken-line example: in this case $\mathcal{A}\left(s, s^{\prime}\right)$ can be found easily, it vanishes if s, s^{\prime} have the same sign, being otherwise

$$
\mathcal{A}\left(s, s^{\prime}\right)=\frac{\alpha^{4}}{32 \pi} K_{0}^{\prime}\left(\frac{\alpha}{2}\left|s-s^{\prime}\right|\right) \frac{\left|s s^{\prime}\right|}{\left|s-s^{\prime}\right|} \chi_{\Omega}\left(s, s^{\prime}\right)
$$

where $\chi_{\Omega}(\cdot, \cdot)$ is the characteristic function of the set Ω, the union of the second and fourth quadrant.

Weakly bent curves, continued

One has to compare with the Birman-Schwinger operator corresponding to the straight line which has the kernel $K_{0}\left(\frac{\kappa}{2}\left|s-s^{\prime}\right|\right)$ in the vicinity of the point $\kappa=\frac{1}{2} \alpha$ corresponding to threshold of the essential spectrum.

Let us return to the broken-line example: in this case $\mathcal{A}\left(s, s^{\prime}\right)$ can be found easily, it vanishes if s, s^{\prime} have the same sign, being otherwise

$$
\mathcal{A}\left(s, s^{\prime}\right)=\frac{\alpha^{4}}{32 \pi} K_{0}^{\prime}\left(\frac{\alpha}{2}\left|s-s^{\prime}\right|\right) \frac{\left|s s^{\prime}\right|}{\left|s-s^{\prime}\right|} \chi_{\Omega}\left(s, s^{\prime}\right)
$$

where $\chi_{\Omega}(\cdot, \cdot)$ is the characteristic function of the set Ω, the union of the second and fourth quadrant. The integral of $\mathcal{A}\left(s, s^{\prime}\right)$ over the both variable can be computed explicitly giving

$$
\frac{-\frac{1}{4} \alpha^{2}-\lambda\left(H_{\Gamma_{\beta}}\right)}{-\frac{1}{4} \alpha^{2}}=-\frac{1}{9 \pi^{2}} \beta^{4}+o\left(\beta^{4}\right)
$$

Weakly deformed planes

We can pose the same question in dimension three but it is more subtle, because then global properties of the interaction support play now role

Weakly deformed planes

We can pose the same question in dimension three but it is more subtle, because then global properties of the interaction support play now role; recall that a conical surface, however 'flat' it may be, i.e. for any $\theta>0$, gives rise to an infinite discrete spectrum

Weakly deformed planes

We can pose the same question in dimension three but it is more subtle, because then global properties of the interaction support play now role; recall that a conical surface, however 'flat' it may be, i.e. for any $\theta>0$, gives rise to an infinite discrete spectrum

Let us thus restrict our attention to locally deformed planes

Weakly deformed planes

We can pose the same question in dimension three but it is more subtle, because then global properties of the interaction support play now role; recall that a conical surface, however 'flat' it may be, i.e. for any $\theta>0$, gives rise to an infinite discrete spectrum

Let us thus restrict our attention to locally deformed planes: consider $\Gamma=\Gamma_{\beta}(f) \subset \mathbb{R}^{3}$ with $\beta>0$ given by

$$
\Gamma_{\beta}:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{3}=\beta f\left(x_{1}, x_{2}\right)\right\} \subset \mathbb{R}^{3}
$$

where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a nonzero C^{2}-smooth, compactly supported function

Weakly deformed planes

We can pose the same question in dimension three but it is more subtle, because then global properties of the interaction support play now role; recall that a conical surface, however 'flat' it may be, i.e. for any $\theta>0$, gives rise to an infinite discrete spectrum

Let us thus restrict our attention to locally deformed planes: consider $\Gamma=\Gamma_{\beta}(f) \subset \mathbb{R}^{3}$ with $\beta>0$ given by

$$
\Gamma_{\beta}:=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{3}=\beta f\left(x_{1}, x_{2}\right)\right\} \subset \mathbb{R}^{3}
$$

where $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a nonzero C^{2}-smooth, compactly supported function and ask how the spectrum of $H_{\alpha, \beta}:=-\Delta-\alpha \delta\left(x-\Gamma_{\beta}\right)$ in the asymptotic regime $\beta \rightarrow 0+$.

The asymptotic expansion

The method to use is again Birman-Schwinger analysis; it yields

The asymptotic expansion

The method to use is again Birman-Schwinger analysis; it yields
Theorem
Let $\alpha>0$ be fixed and set

$$
\mathcal{D}_{\alpha, f}:=\int_{\mathbb{R}^{2}}|p|^{2}\left(\alpha^{2}-\frac{2 \alpha^{3}}{\sqrt{4|p|^{2}+\alpha^{2}}+\alpha}\right)|\hat{f}(p)|^{2} \mathrm{~d} p>0
$$

where \hat{f} is the Fourier transform of f. Then $\# \sigma_{\text {disc }}\left(H_{\alpha, \beta}\right)=1$ holds for all sufficiently small $\beta>0$ and, moreover, $\lambda_{1}^{\alpha}(\beta)$ admits the asymptotic expansion

$$
\lambda_{1}^{\alpha}(\beta)=-\frac{\alpha^{2}}{4}-\exp \left(-\frac{16 \pi}{\mathcal{D}_{\alpha, f} \beta^{2}}\right)(1+o(1)) \quad \text { as } \beta \rightarrow 0+
$$

言
P.E., S. Kondej, V. Lotoreichik: Asymptotics of the bound state induced by δ-interaction supported on a weakly deformed plane, J. Math. Phys. 59 (2018), 013051

Spectral optimization

Let us turn to the other topic mentioned in the opening. A traditional spectral geometry question is about the shape which makes a given property optimal.

Spectral optimization

Let us turn to the other topic mentioned in the opening. A traditional spectral geometry question is about the shape which makes a given property optimal.

Quite often the optimal shape has a symmetry; the most classical example is the Faber-Krahn inequality proving a conjecture put forward by Lord Rayleigh

Spectral optimization

Let us turn to the other topic mentioned in the opening. A traditional spectral geometry question is about the shape which makes a given property optimal.

Quite often the optimal shape has a symmetry; the most classical example is the Faber-Krahn inequality proving a conjecture put forward by Lord Rayleigh: let $\lambda_{1}(\Omega)$ be the principal eigenvalues of the Dirichlet Laplacian $-\Delta_{\Omega}^{\mathrm{D}}$ for a region $\Omega \subset \mathbb{R}^{d}$. Assuming that $\operatorname{vol}(\Omega)$ is kept fixed, then $\lambda_{1}(\Omega)$ is sharply minimized by a ball.

G. Faber: Beweiss das unter allen homogenen Membranen von Gleicher Fläche und gleicher Spannung die kreisförmige den Tiefsten Grundton gibt, Sitzungber. der math.-phys. Klasse der Bayerische Akad. der Wiss. zu München (1923), 169-172.
E. Krahn: Über eine von Rayleigh formulierte minimal Eigenschaft des Kreises, Ann. Math. 94 (1925), 97-100.

Spectral optimization

Let us turn to the other topic mentioned in the opening. A traditional spectral geometry question is about the shape which makes a given property optimal.

Quite often the optimal shape has a symmetry; the most classical example is the Faber-Krahn inequality proving a conjecture put forward by Lord Rayleigh: let $\lambda_{1}(\Omega)$ be the principal eigenvalues of the Dirichlet Laplacian $-\Delta_{\Omega}^{\mathrm{D}}$ for a region $\Omega \subset \mathbb{R}^{d}$. Assuming that $\operatorname{vol}(\Omega)$ is kept fixed, then $\lambda_{1}(\Omega)$ is sharply minimized by a ball.

國
G. Faber: Beweiss das unter allen homogenen Membranen von Gleicher Fläche und gleicher Spannung die kreisförmige den Tiefsten Grundton gibt, Sitzungber. der math.-phys. Klasse der Bayerische Akad. der Wiss. zu München (1923), 169-172.

青
E. Krahn: Über eine von Rayleigh formulierte minimal Eigenschaft des Kreises, Ann. Math. 94 (1925), 97-100.

To give one more example, let us mention the Payne-Pólya-Weinberger inequality: in the same situation the ratio of the first two eigenvalues, $\frac{\lambda_{2}(\Omega)}{\lambda_{1}(\Omega)}$, is sharply maximized by a ball.

[^2]
Non-simply connected regions

Not always does the intuition tells us the right answer

Non-simply connected regions

Not always does the intuition tells us the right answer. For instance, the topology may play role. Let us mention pictorially two examples in maximum symmetry may lead to maximum of the principal eigenvalue

Non-simply connected regions

Not always does the intuition tells us the right answer. For instance, the topology may play role. Let us mention pictorially two examples in maximum symmetry may lead to maximum of the principal eigenvalue If we seek extremum among strips of fixed length and width we have

whenever the strip is not a circular annulus.
P.E., E.M. Harrell, M. Loss: Optimal eigenvalues for some Laplacians and Schrödinger operators depending on curvature, in Proceedings of QMath7, Birkhäuser, Basel 1999; pp. 47-53.

Non-simply connected regions

Not always does the intuition tells us the right answer. For instance, the topology may play role. Let us mention pictorially two examples in maximum symmetry may lead to maximum of the principal eigenvalue If we seek extremum among strips of fixed length and width we have

whenever the strip is not a circular annulus.
P.E., E.M. Harrell, M. Loss: Optimal eigenvalues for some Laplacians and Schrödinger operators depending on curvature, in Proceedings of QMath7, Birkhäuser, Basel 1999; pp. 47-53.
Similarly, for a circular obstacle in circular cavity we have

whenever the obstacle is off center; the minimum is reached when it is touching the boundary.

圊
E.M. Harrell, P. Kröger, K. Kurata: On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue, SIAM J. Math. Anal. 33 (2001), 240-259.

A leaky loop analogue

Let Γ be a loop in $\mathbb{R}^{d}, d \geq 2$, parametrized by its arc length, i.e. a piecewise differentiable function $\Gamma:[0, L] \rightarrow \mathbb{R}^{d}$ such that $\Gamma(0)=\Gamma(L)$ and $|\dot{\Gamma}(s)|=1$ for all but finitely many $s \in[0, L]$

A leaky loop analogue

Let Γ be a loop in $\mathbb{R}^{d}, d \geq 2$, parametrized by its arc length, i.e. a piecewise differentiable function $\Gamma:[0, L] \rightarrow \mathbb{R}^{d}$ such that $\Gamma(0)=\Gamma(L)$ and $|\dot{\Gamma}(s)|=1$ for all but finitely many $s \in[0, L]$. We have

Theorem

Let $d=2$. For any $\alpha>0$ and $L>0$ we have $\lambda_{1}(\alpha, \Gamma) \leq \lambda_{1}(\alpha, \mathcal{C})$, where \mathcal{C} is a circle of perimeter L, the inequality being sharp unless Γ is congruent with \mathcal{C}.

[^3]
A leaky loop analogue

Let Γ be a loop in $\mathbb{R}^{d}, d \geq 2$, parametrized by its arc length, i.e. a piecewise differentiable function $\Gamma:[0, L] \rightarrow \mathbb{R}^{d}$ such that $\Gamma(0)=\Gamma(L)$ and $|\dot{\Gamma}(s)|=1$ for all but finitely many $s \in[0, L]$. We have

Theorem

Let $d=2$. For any $\alpha>0$ and $L>0$ we have $\lambda_{1}(\alpha, \Gamma) \leq \lambda_{1}(\alpha, \mathcal{C})$, where \mathcal{C} is a circle of perimeter L, the inequality being sharp unless Γ is congruent with \mathcal{C}.

[^4]One more time, we employs the generalized Birman-Schwinger principle by which there is one-to-one correspondence between eigenvalues $-\kappa^{2}$ of $H_{\alpha, \Gamma}$ and solutions to the integral-operator equation

$$
\mathcal{R}_{\alpha, \Gamma}^{\kappa} \phi=\phi, \quad \text { where } \mathcal{R}_{\alpha, \Gamma}^{\kappa}\left(s, s^{\prime}\right):=\frac{\alpha}{2 \pi} K_{0}\left(\kappa\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right|\right)
$$

on $L^{2}([0, L])$, where K_{0} is the Macdonald function.

Rephrasing it as a geometric problem

We employ inequalities on mean values of chords denoted as $C_{L}^{p}(u)$:

$$
\int_{0}^{L}|\Gamma(s+u)-\Gamma(s)|^{p} \mathrm{~d} s \leq \frac{L^{1+p}}{\pi^{p}} \sin ^{p} \frac{\pi u}{L}, \quad p>0, u \in\left(0, \frac{1}{2} L\right]
$$

Rephrasing it as a geometric problem

We employ inequalities on mean values of chords denoted as $C_{L}^{p}(u)$:

$$
\int_{0}^{L}|\Gamma(s+u)-\Gamma(s)|^{p} \mathrm{~d} s \leq \frac{L^{1+p}}{\pi^{p}} \sin ^{p} \frac{\pi u}{L}, \quad p>0, u \in\left(0, \frac{1}{2} L\right]
$$

This may not be true for all $p>0$, however, a simple Fourier analysis allows one to demonstrate the following result:

Rephrasing it as a geometric problem

We employ inequalities on mean values of chords denoted as $C_{L}^{p}(u)$:

$$
\int_{0}^{L}|\Gamma(s+u)-\Gamma(s)|^{p} \mathrm{~d} s \leq \frac{L^{1+p}}{\pi^{p}} \sin ^{p} \frac{\pi u}{L}, \quad p>0, u \in\left(0, \frac{1}{2} L\right]
$$

This may not be true for all $p>0$, however, a simple Fourier analysis allows one to demonstrate the following result:

Proposition

$C_{L}^{2}(u)$ is valid for any $u \in\left(0, \frac{1}{2} L\right]$, and the inequality is strict unless Γ is a planar circle; by convexity the same is true for all $p<2$.

Rephrasing it as a geometric problem

We employ inequalities on mean values of chords denoted as $C_{L}^{p}(u)$:

$$
\int_{0}^{L}|\Gamma(s+u)-\Gamma(s)|^{p} \mathrm{~d} s \leq \frac{L^{1+p}}{\pi^{p}} \sin ^{p} \frac{\pi u}{L}, \quad p>0, u \in\left(0, \frac{1}{2} L\right]
$$

This may not be true for all $p>0$, however, a simple Fourier analysis allows one to demonstrate the following result:

Proposition

$C_{L}^{2}(u)$ is valid for any $u \in\left(0, \frac{1}{2} L\right]$, and the inequality is strict unless Γ is a planar circle; by convexity the same is true for all $p<2$.

Using a variational argument together with the fact that $K_{0}(\cdot)$ appearing in the resolvent kernel is strictly monotonous and convex the optimization problem for $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ is reduced to the inequality $C_{L}^{1}(u)$ being thus proved.

Rephrasing it as a geometric problem

We employ inequalities on mean values of chords denoted as $C_{L}^{p}(u)$:

$$
\int_{0}^{L}|\Gamma(s+u)-\Gamma(s)|^{p} \mathrm{~d} s \leq \frac{L^{1+p}}{\pi^{p}} \sin ^{p} \frac{\pi u}{L}, \quad p>0, u \in\left(0, \frac{1}{2} L\right]
$$

This may not be true for all $p>0$, however, a simple Fourier analysis allows one to demonstrate the following result:

Proposition

$C_{L}^{2}(u)$ is valid for any $u \in\left(0, \frac{1}{2} L\right]$, and the inequality is strict unless Γ is a planar circle; by convexity the same is true for all $p<2$.

Using a variational argument together with the fact that $K_{0}(\cdot)$ appearing in the resolvent kernel is strictly monotonous and convex the optimization problem for $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ is reduced to the inequality $C_{L}^{1}(u)$ being thus proved.
Remark: The (reverse) inequalities hold also for $p \in[-2,0)$ showing, e.g., that a charged loop in the absence of gravity takes a circular form.

A discrete analogue: polymer loops

Consider the same loop as above with point interactions placed at the arc distances $\frac{j L}{N}, j=0, \ldots, N_{1}$, in other words, the formal Hamiltonian

$$
H_{\alpha, \Gamma}^{N}=-\Delta+\tilde{\alpha} \sum_{j=0}^{N-1} \delta\left(x-\Gamma\left(\frac{j L}{N}\right)\right)
$$

in $L^{2}\left(\mathbb{R}^{d}\right), d=2,3$, where the last term has to be properly defined

A discrete analogue: polymer loops

Consider the same loop as above with point interactions placed at the arc distances $\frac{j L}{N}, j=0, \ldots, N_{1}$, in other words, the formal Hamiltonian

$$
H_{\alpha, \Gamma}^{N}=-\Delta+\tilde{\alpha} \sum_{j=0}^{N-1} \delta\left(x-\Gamma\left(\frac{j L}{N}\right)\right)
$$

in $L^{2}\left(\mathbb{R}^{d}\right), d=2,3$, where the last term has to be properly defined We are interested in the shape of Γ which maximizes the ground state energy provided, of course, that the discrete spectrum of $H_{\alpha, \Gamma}^{N}$ is non-empty; this requirement is nontrivial for $d=3$.

A discrete analogue: polymer loops

Consider the same loop as above with point interactions placed at the arc distances $\frac{j L}{N}, j=0, \ldots, N_{1}$, in other words, the formal Hamiltonian

$$
H_{\alpha, \Gamma}^{N}=-\Delta+\tilde{\alpha} \sum_{j=0}^{N-1} \delta\left(x-\Gamma\left(\frac{j L}{N}\right)\right)
$$

in $L^{2}\left(\mathbb{R}^{d}\right), d=2,3$, where the last term has to be properly defined We are interested in the shape of Γ which maximizes the ground state energy provided, of course, that the discrete spectrum of $H_{\alpha, \Gamma}^{N}$ is non-empty; this requirement is nontrivial for $d=3$.

Introduce the generalized boundary values as the coefficients in the expansion of H_{Y}^{*} where H_{Y} is the Laplacian restricted to functions vanishing at the vicinity of the points of Y.

Point interactions 'necklaces'

A reminder: fixing the points $y_{j} \in Y$ the said expansions look as

$$
\begin{aligned}
& \psi(x)=-\frac{1}{2 \pi} \log \left|x-y_{j}\right| L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right), \quad d=2 \\
& \psi(x)=\frac{1}{4 \pi\left|x-y_{j}\right|} L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right), \quad d=3
\end{aligned}
$$

Point interactions 'necklaces'

A reminder: fixing the points $y_{j} \in Y$ the said expansions look as

$$
\begin{aligned}
& \psi(x)=-\frac{1}{2 \pi} \log \left|x-y_{j}\right| L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right), \quad d=2 \\
& \psi(x)=\frac{1}{4 \pi\left|x-y_{j}\right|} L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right), \quad d=3
\end{aligned}
$$

Local self-adjoint extension are then given by

$$
L_{1}\left(\psi, y_{j}\right)-\alpha L_{0}\left(\psi, y_{j}\right)=0, \quad \alpha \in \mathbb{R} ;
$$

the absence of interaction corresponds to $\alpha=\infty$, for details we refer to
S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden: Solvable Models in Quantum Mechanics, second edition, Amer.
Math. Soc., Providence, R.I., 2005 .

Point interactions 'necklaces'

A reminder: fixing the points $y_{j} \in Y$ the said expansions look as

$$
\begin{aligned}
& \psi(x)=-\frac{1}{2 \pi} \log \left|x-y_{j}\right| L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right), \quad d=2 \\
& \psi(x)=\frac{1}{4 \pi\left|x-y_{j}\right|} L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right), \quad d=3
\end{aligned}
$$

Local self-adjoint extension are then given by

$$
L_{1}\left(\psi, y_{j}\right)-\alpha L_{0}\left(\psi, y_{j}\right)=0, \quad \alpha \in \mathbb{R} ;
$$

the absence of interaction corresponds to $\alpha=\infty$, for details we refer to
S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden: Solvable Models in Quantum Mechanics, second edition, Amer.
Math. Soc., Providence, R.I., 2005.

Theorem

The ground state of $H_{\alpha, \Gamma}^{N}$ is uniquely maximized by a N-regular polygon.

New effects in three dimensions

In three dimensions the discrete spectrum of $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
may be empty is α is small enough. Recall the sphere example mentioned earlier where bound states are known to exist if and only if $\alpha R>1$.

New effects in three dimensions

In three dimensions the discrete spectrum of $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
may be empty is α is small enough. Recall the sphere example mentioned earlier where bound states are known to exist if and only if $\alpha R>1$.

This raises the following question: given the critical sphere, $\alpha R=1$, would its deformation produce a discrete spectrum?

New effects in three dimensions

In three dimensions the discrete spectrum of $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
may be empty is α is small enough. Recall the sphere example mentioned earlier where bound states are known to exist if and only if $\alpha R>1$.

This raises the following question: given the critical sphere, $\alpha R=1$, would its deformation produce a discrete spectrum? One answer is

Theorem
Let Γ_{ϵ} by a deformation of the sphere expressed in spherical coordinates as $r(\theta, \phi)=R(1+\epsilon \rho(\theta, \phi))$ where ρ is nonzero function of zero mean. If $H_{\alpha, \Gamma_{0}}$ is critical, $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma_{\epsilon}}\right) \neq \emptyset$ holds for all nonzero ϵ small enough.

[^5]
New effects in three dimensions

In three dimensions the discrete spectrum of $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
may be empty is α is small enough. Recall the sphere example mentioned earlier where bound states are known to exist if and only if $\alpha R>1$.

This raises the following question: given the critical sphere, $\alpha R=1$, would its deformation produce a discrete spectrum? One answer is

Theorem

Let Γ_{ϵ} by a deformation of the sphere expressed in spherical coordinates as $r(\theta, \phi)=R(1+\epsilon \rho(\theta, \phi))$ where ρ is nonzero function of zero mean. If $H_{\alpha, \Gamma_{0}}$ is critical, $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma_{\epsilon}}\right) \neq \emptyset$ holds for all nonzero ϵ small enough.

[^6]Remarks: (a) The results fails to hold globally: if a surface-preserving deformation of a critical surface is elongated enough, the discrete spectrum is empty.

New effects in three dimensions

In three dimensions the discrete spectrum of $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$ may be empty is α is small enough. Recall the sphere example mentioned earlier where bound states are known to exist if and only if $\alpha R>1$.

This raises the following question: given the critical sphere, $\alpha R=1$, would its deformation produce a discrete spectrum? One answer is

Theorem

Let Γ_{ϵ} by a deformation of the sphere expressed in spherical coordinates as $r(\theta, \phi)=R(1+\epsilon \rho(\theta, \phi))$ where ρ is nonzero function of zero mean. If $H_{\alpha, \Gamma_{0}}$ is critical, $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma_{\epsilon}}\right) \neq \emptyset$ holds for all nonzero ϵ small enough.

[^7]Remarks: (a) The results fails to hold globally: if a surface-preserving deformation of a critical surface is elongated enough, the discrete spectrum is empty.
(b) In contrast, deformation of a critical surface always produces a nonvoid discrete spectrum if it is capacity preserving.

Cones

We have mentioned conical surfaces. To state the question, let \mathcal{T} be a C^{2}-smooth loop on the $2 D$ unit sphere $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ of length $|\mathcal{T}|$ without self-intersections. We distinguish between circular and non-circular loops; a circle $\mathcal{C} \subset \mathbb{S}^{2}$ has, of course, the length $|\mathcal{C}| \leq 2 \pi$.

Cones

We have mentioned conical surfaces. To state the question, let \mathcal{T} be a C^{2}-smooth loop on the 2D unit sphere $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ of length $|\mathcal{T}|$ without self-intersections. We distinguish between circular and non-circular loops; a circle $\mathcal{C} \subset \mathbb{S}^{2}$ has, of course, the length $|\mathcal{C}| \leq 2 \pi$.

The C^{2}-smooth cone $\Sigma_{R}(\mathcal{T}) \subset \mathbb{R}^{3}$ of radius $R \in(0, \infty]$ with a C^{2}-smooth loop $\mathcal{T} \subset \mathbb{S}^{2}$ as its cross-section is

$$
\Sigma_{R}(\mathcal{T}):=\left\{r \mathcal{T} \in \mathbb{R}^{3}: r \in[0, R)\right\} ;
$$

it is called finite (or truncated) if $R<\infty$ and infinite otherwise.

Theorem

For finite cones $\Gamma_{R}:=\Sigma_{R}(\mathcal{C})$ and $\Lambda_{R}:=\Sigma_{R}(\mathcal{T})$ of radius $R>0$ with $L:=|\mathcal{C}|=|\mathcal{T}| \in(0,2 \pi]$ we have $\# \sigma_{\text {disc }}\left(H_{\alpha, \Gamma_{R}}\right) \geq 1$ if and only if $\alpha>\alpha_{\text {crit }}$ holds for some $\alpha_{\text {crit }}(L, R)>0$

Cones

We have mentioned conical surfaces. To state the question, let \mathcal{T} be a C^{2}-smooth loop on the 2D unit sphere $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ of length $|\mathcal{T}|$ without self-intersections. We distinguish between circular and non-circular loops; a circle $\mathcal{C} \subset \mathbb{S}^{2}$ has, of course, the length $|\mathcal{C}| \leq 2 \pi$.

The C^{2}-smooth cone $\Sigma_{R}(\mathcal{T}) \subset \mathbb{R}^{3}$ of radius $R \in(0, \infty]$ with a C^{2}-smooth loop $\mathcal{T} \subset \mathbb{S}^{2}$ as its cross-section is

$$
\Sigma_{R}(\mathcal{T}):=\left\{r \mathcal{T} \in \mathbb{R}^{3}: r \in[0, R)\right\}
$$

it is called finite (or truncated) if $R<\infty$ and infinite otherwise.

Theorem

For finite cones $\Gamma_{R}:=\Sigma_{R}(\mathcal{C})$ and $\Lambda_{R}:=\Sigma_{R}(\mathcal{T})$ of radius $R>0$ with $L:=|\mathcal{C}|=|\mathcal{T}| \in(0,2 \pi]$ we have $\# \sigma_{\text {disc }}\left(H_{\alpha, \Gamma_{R}}\right) \geq 1$ if and only if $\alpha>\alpha_{\text {crit }}$ holds for some $\alpha_{\text {crit }}(L, R)>0$. If the loops \mathcal{T} and \mathcal{C} are not congruent, $\sigma_{\text {crit }}\left(H_{\alpha, \wedge_{R}}\right)$ is nonempty for $\alpha \geq \alpha_{\text {crit }}$ and $\lambda_{1}\left(H_{\alpha, \Lambda_{R}}\right)<\lambda_{1}\left(H_{\alpha, \Gamma_{R}}\right)$.

[^8]
Cones, continued

In particular, we have the effect we have encountered with spheres:

Corollary

Any (fixed-radius, smooth, conical) deformation of a critical circular cone gives rise to a non-void discrete spectrum of the corresponding $\boldsymbol{H}_{\alpha, \Gamma}$.

Cones, continued

In particular, we have the effect we have encountered with spheres:

Corollary

Any (fixed-radius, smooth, conical) deformation of a critical circular cone gives rise to a non-void discrete spectrum of the corresponding $\boldsymbol{H}_{\alpha, \Gamma}$.

For infinite cones the essential spectrum changes, $\sigma_{\mathrm{ess}}\left(H_{\alpha, \Gamma}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)$, however, the above spectral inequality holds again.

Cones, continued

In particular, we have the effect we have encountered with spheres:

Corollary
 Any (fixed-radius, smooth, conical) deformation of a critical circular cone gives rise to a non-void discrete spectrum of the corresponding $\boldsymbol{H}_{\alpha, \Gamma}$.

For infinite cones the essential spectrum changes, $\sigma_{\mathrm{ess}}\left(H_{\alpha, \Gamma}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)$, however, the above spectral inequality holds again.

These results follow from the generalized BS principle in combination with an inequality related to $C_{L}^{p}(u)$ used earlier: for a C^{2}-smooth loop $\mathcal{T} \subset \mathbb{S}^{2}$ we put $\Phi_{f}[\mathcal{T}]:=\int_{0}^{L} \int_{0}^{L} f\left(|\tau(s)-\tau(t)|^{2}\right) \mathrm{d} s \mathrm{~d} t$

Cones, continued

In particular, we have the effect we have encountered with spheres:

Corollary

Any (fixed-radius, smooth, conical) deformation of a critical circular cone gives rise to a non-void discrete spectrum of the corresponding $H_{\alpha, \Gamma}$.

For infinite cones the essential spectrum changes, $\sigma_{\text {ess }}\left(H_{\alpha, \Gamma}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)$, however, the above spectral inequality holds again.

These results follow from the generalized BS principle in combination with an inequality related to $C_{L}^{p}(u)$ used earlier: for a C^{2}-smooth loop $\mathcal{T} \subset \mathbb{S}^{2}$ we put $\Phi_{f}[\mathcal{T}]:=\int_{0}^{L} \int_{0}^{L} f\left(|\tau(s)-\tau(t)|^{2}\right) \mathrm{d} s \mathrm{~d} t$; then we have

Proposition

Let $f \in C([0, \infty) ; \mathbb{R})$ be convex and decreasing. If $|\mathcal{T}|=|\mathcal{C}|=L$ for some $L \in(0,2 \pi]$, then isoperimetric inequality $\Phi_{f}[\mathcal{C}]<\Phi_{f}[\mathcal{T}]$ is valid.
G. Lüko: On the mean length of the chords of a closed curve, Israel J. Math. 4 (1966), 23-32.
J. O'Hara: Energy of knots and conformal geometry, World Scientific 2003.

Another object of interest: stars

Let us return to planar leaky graphs and consider next star graphs $\Sigma_{N}=\Sigma_{N}(L) \subset \mathbb{R}^{2}$, which have $N \geq 2$ edges of length $L \in(0, \infty]$ each, enumerated in the clockwise manner.

Another object of interest: stars

Let us return to planar leaky graphs and consider next star graphs $\Sigma_{N}=\Sigma_{N}(L) \subset \mathbb{R}^{2}$, which have $N \geq 2$ edges of length $L \in(0, \infty]$ each, enumerated in the clockwise manner.

They are characterized by the angles $\phi=\phi\left(\Sigma_{N}\right)=\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{N}\right\}$ between the neighboring edges, $\phi_{n} \in(0,2 \pi)$ for all $n \in\{1, \ldots, N\}$ and $\sum_{n=1}^{N} \phi_{n}=2 \pi$; by Γ_{N} we denote the star graph with maximum symmetry, in other words, $\phi_{n}=\frac{2 \pi}{N}$ for $n=1$, dost, N.

Another object of interest: stars

Let us return to planar leaky graphs and consider next star graphs $\Sigma_{N}=\Sigma_{N}(L) \subset \mathbb{R}^{2}$, which have $N \geq 2$ edges of length $L \in(0, \infty]$ each, enumerated in the clockwise manner.
They are characterized by the angles $\phi=\phi\left(\Sigma_{N}\right)=\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{N}\right\}$ between the neighboring edges, $\phi_{n} \in(0,2 \pi)$ for all $n \in\{1, \ldots, N\}$ and $\sum_{n=1}^{N} \phi_{n}=2 \pi$; by Γ_{N} we denote the star graph with maximum symmetry, in other words, $\phi_{n}=\frac{2 \pi}{N}$ for $n=1$, dost, N.

The problem can be treated using the same method as before, i.e. a combination of the generalized BS principle and geometric inequalities.

Star optimization

Theorem

For $L<\infty$ and any $\alpha>0$ we have the relation

$$
\max _{\Sigma_{N}(L)} \lambda_{1}^{\alpha}\left(\Sigma_{N}(L)\right)=\lambda_{1}^{\alpha}\left(\Gamma_{N}(L)\right),
$$

where the maximum is taken over all star graphs with $N \geq 2$ edges of; the equality is achieved if and only if Σ_{N} and Γ_{N} are congruent.
P. Exner, V. Lotoreichik: Optimization of the lowest eigenvalue for leaky star graphs, in Proceedings of the conference
"Mathematical Results in Quantum Physics" (QMath13, Atlanta 2016; F. Bonetto, D. Borthwick, E. Harrell, M. Loss, eds.), Contemporary Math., vol 717, AMS, Providence, R.I., 2018; pp. 187-196.

Star optimization

Theorem
For $L<\infty$ and any $\alpha>0$ we have the relation

$$
\max _{\Sigma_{N}(L)} \lambda_{1}^{\alpha}\left(\Sigma_{N}(L)\right)=\lambda_{1}^{\alpha}\left(\Gamma_{N}(L)\right),
$$

where the maximum is taken over all star graphs with $N \geq 2$ edges of; the equality is achieved if and only if Σ_{N} and Γ_{N} are congruent.
P. Exner, V. Lotoreichik: Optimization of the lowest eigenvalue for leaky star graphs, in Proceedings of the conference "Mathematical Results in Quantum Physics" (QMath13, Atlanta 2016; F. Bonetto, D. Borthwick, E. Harrell, M. Loss, eds.), Contemporary Math., vol 717, AMS, Providence, R.I., 2018; pp. 187-196

The analogous result holds for infinite stars, $L=\infty$. For illustration we show the groundstate eigenfunction for $\Sigma_{6}(\infty)$.

Stars in three dimensions

Albeit technically nontrivial, the previous problem was simple in the sense that the result was easy to guess.

Stars in three dimensions

Albeit technically nontrivial, the previous problem was simple in the sense that the result was easy to guess.

This would not be the same if we consider an analogue of the star optimization problem in three dimensions

Stars in three dimensions

Albeit technically nontrivial, the previous problem was simple in the sense that the result was easy to guess.

This would not be the same if we consider an analogue of the star optimization problem in three dimensions, i.e. for Schrödinger operators with a singular interaction of codim $\Gamma=2$ supported by a 'sea urchin' shape set Γ of N 'pins', finite or semi-infinite.

Stars in three dimensions

Albeit technically nontrivial, the previous problem was simple in the sense that the result was easy to guess.

This would not be the same if we consider an analogue of the star optimization problem in three dimensions, i.e. for Schrödinger operators with a singular interaction of codim $\Gamma=2$ supported by a 'sea urchin' shape set Γ of N 'pins', finite or semi-infinite.

Optimization problem for 3D stars is no doubt nontrivial. The first analogue coming to mind is the century-old Thomson problem about the equilibrium distribution of N point charges on the surface of a sphere.

J.J. Thomson: On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure, Phil. Mag. 7 (1904), 237-265.

Inspiration from Thomson problem

Thomson problem is notoriously difficult; recall that a rigorous solution is known for a few small N cases, for instance, a (computer-assisted) proof for $N=5$ was presented only recently.
R.E. Schwartz: The five-electron case of Thomson's problem, Experim. Math. 22 (2013), 157-186.

Inspiration from Thomson problem

Thomson problem is notoriously difficult; recall that a rigorous solution is known for a few small N cases, for instance, a (computer-assisted) proof for $N=5$ was presented only recently.
R R.E. Schwartz: The five-electron case of Thomson's problem, Experim. Math. 22 (2013), 157-186.
Note also that twenty years ago Stephen Smale included it into the list of eighteen 'new Hilbert problems' for the 21st century.

Inspiration from Thomson problem

Thomson problem is notoriously difficult; recall that a rigorous solution is known for a few small N cases, for instance, a (computer-assisted) proof for $N=5$ was presented only recently.

R.E. Schwartz: The five-electron case of Thomson's problem, Experim. Math. 22 (2013), 157-186.

Note also that twenty years ago Stephen Smale included it into the list of eighteen 'new Hilbert problems' for the 21st century.

Attempts to solve it led to generalizations triggering numerous investigations in algebraic combinatorics, see for instance
H. Cohen, A. Kumar: Universally optimal distribution of point on the sphere, J. AMS 20 (2007), 99-148.
E. Bannai, E. Bannai: A survey on spherical designs and algebraic combinatorics on spheres, Eur. J. Combin. 30 (2009), 1392-1425.

Inspiration from Thomson problem

Thomson problem is notoriously difficult; recall that a rigorous solution is known for a few small N cases, for instance, a (computer-assisted) proof for $N=5$ was presented only recently.

围
R.E. Schwartz: The five-electron case of Thomson's problem, Experim. Math. 22 (2013), 157-186.

Note also that twenty years ago Stephen Smale included it into the list of eighteen 'new Hilbert problems' for the 21st century.

Attempts to solve it led to generalizations triggering numerous investigations in algebraic combinatorics, see for instance
H. Cohen, A. Kumar: Universally optimal distribution of point on the sphere, J. AMS 20 (2007), 99-148.
E. Bannai, E. Bannai: A survey on spherical designs and algebraic combinatorics on spheres, Eur. J. Combin. 30 (2009), 1392-1425.

Unfortunately

Inspiration from Thomson problem

Thomson problem is notoriously difficult; recall that a rigorous solution is known for a few small N cases, for instance, a (computer-assisted) proof for $N=5$ was presented only recently.

R.E. Schwartz: The five-electron case of Thomson's problem, Experim. Math. 22 (2013), 157-186.

Note also that twenty years ago Stephen Smale included it into the list of eighteen 'new Hilbert problems' for the 21st century.

Attempts to solve it led to generalizations triggering numerous investigations in algebraic combinatorics, see for instance
H. Cohen, A. Kumar: Universally optimal distribution of point on the sphere, J. AMS 20 (2007), 99-148.
E. Bannai, E. Bannai: A survey on spherical designs and algebraic combinatorics on spheres, Eur. J. Combin. 30 (2009), 1392-1425.

Unfortunately - and this makes a theoretical physicist unhappy

Inspiration from Thomson problem

Thomson problem is notoriously difficult; recall that a rigorous solution is known for a few small N cases, for instance, a (computer-assisted) proof for $N=5$ was presented only recently.

R.E. Schwartz: The five-electron case of Thomson's problem, Experim. Math. 22 (2013), 157-186.

Note also that twenty years ago Stephen Smale included it into the list of eighteen 'new Hilbert problems' for the 21st century.

Attempts to solve it led to generalizations triggering numerous investigations in algebraic combinatorics, see for instance

星
H. Cohen, A. Kumar: Universally optimal distribution of point on the sphere, J. AMS 20 (2007), 99-148.
E. Bannai, E. Bannai: A survey on spherical designs and algebraic combinatorics on spheres, Eur. J. Combin. 30 (2009), 1392-1425.

Unfortunately - and this makes a theoretical physicist unhappy - physics is forgotten at that!

Inspiration from Thomson problem

Thomson problem is notoriously difficult; recall that a rigorous solution is known for a few small N cases, for instance, a (computer-assisted) proof for $N=5$ was presented only recently.

氰
R.E. Schwartz: The five-electron case of Thomson's problem, Experim. Math. 22 (2013), 157-186.

Note also that twenty years ago Stephen Smale included it into the list of eighteen 'new Hilbert problems' for the 21st century.

Attempts to solve it led to generalizations triggering numerous investigations in algebraic combinatorics, see for instance

圊
H. Cohen, A. Kumar: Universally optimal distribution of point on the sphere, J. AMS 20 (2007), 99-148.
E. Bannai, E. Bannai: A survey on spherical designs and algebraic combinatorics on spheres, Eur. J. Combin. 30 (2009), 1392-1425.

Unfortunately - and this makes a theoretical physicist unhappy - physics is forgotten at that! They quote, for instance, Tamme's problem in botany but not Thomson

Inspiration from Thomson problem

Thomson problem is notoriously difficult; recall that a rigorous solution is known for a few small N cases, for instance, a (computer-assisted) proof for $N=5$ was presented only recently.

氰
R.E. Schwartz: The five-electron case of Thomson's problem, Experim. Math. 22 (2013), 157-186.

Note also that twenty years ago Stephen Smale included it into the list of eighteen 'new Hilbert problems' for the 21st century.

Attempts to solve it led to generalizations triggering numerous investigations in algebraic combinatorics, see for instance

圊
H. Cohen, A. Kumar: Universally optimal distribution of point on the sphere, J. AMS 20 (2007), 99-148.
E. Bannai, E. Bannai: A survey on spherical designs and algebraic combinatorics on spheres, Eur. J. Combin. 30 (2009), 1392-1425.

Unfortunately - and this makes a theoretical physicist unhappy - physics is forgotten at that! They quote, for instance, Tamme's problem in botany but not Thomson. The plum-pudding model was wrong, of course, but still physics was the original inspiration here!

Universal optimality by Cohen and Kumar

Consider N points $\left\{x_{i}\right\}_{i=1}^{N}$ living on the unit sphere S^{2}. They form an M-spherical design if for any polynomial $x \mapsto p(x)$ on \mathbb{R}^{3} of total degree M the equivalence one has $\int_{S^{2}} p(x) \mathrm{d} x=\frac{1}{N} \sum_{i}^{N} p\left(x_{i}\right)$ holds.

Universal optimality by Cohen and Kumar

Consider N points $\left\{x_{i}\right\}_{i=1}^{N}$ living on the unit sphere S^{2}. They form an M-spherical design if for any polynomial $x \mapsto p(x)$ on \mathbb{R}^{3} of total degree M the equivalence one has $\int_{S^{2}} p(x) \mathrm{d} x=\frac{1}{N} \sum_{i}^{N} p\left(x_{i}\right)$ holds.
Let m be the number of different inner products between distinct $\left\{x_{i}\right\}_{i=1}^{N}$. They form a sharp configuration if it is $2 m-1$ spherical design.

Universal optimality by Cohen and Kumar

Consider N points $\left\{x_{i}\right\}_{i=1}^{N}$ living on the unit sphere S^{2}. They form an M-spherical design if for any polynomial $x \mapsto p(x)$ on \mathbb{R}^{3} of total degree M the equivalence one has $\int_{S^{2}} p(x) \mathrm{d} x=\frac{1}{N} \sum_{i}^{N} p\left(x_{i}\right)$ holds.
Let m be the number of different inner products between distinct $\left\{x_{i}\right\}_{i=1}^{N}$. They form a sharp configuration if it is $2 m-1$ spherical design.

By [Cohen-Kumar'07, loc.cit.] sharp configurations are universally optimal meaning that they minimize any potential energy $f:[0,4] \rightarrow \mathbb{R}$ which is completely monotonous, i.e. it satisfies $(-1)^{k} f^{(k)} \geq 0$ for all $k \geq 0$

Universal optimality by Cohen and Kumar

Consider N points $\left\{x_{i}\right\}_{i=1}^{N}$ living on the unit sphere S^{2}. They form an M-spherical design if for any polynomial $x \mapsto p(x)$ on \mathbb{R}^{3} of total degree M the equivalence one has $\int_{S^{2}} p(x) \mathrm{d} x=\frac{1}{N} \sum_{i}^{N} p\left(x_{i}\right)$ holds.
Let m be the number of different inner products between distinct $\left\{x_{i}\right\}_{i=1}^{N}$. They form a sharp configuration if it is $2 m-1$ spherical design.

By [Cohen-Kumar'07, loc.cit.] sharp configurations are universally optimal meaning that they minimize any potential energy $f:[0,4] \rightarrow \mathbb{R}$ which is completely monotonous, i.e. it satisfies $(-1)^{k} f^{(k)} \geq 0$ for all $k \geq 0$. In three dimensions there are five sharp configurations:

Universal optimality by Cohen and Kumar

Consider N points $\left\{x_{i}\right\}_{i=1}^{N}$ living on the unit sphere S^{2}. They form an M-spherical design if for any polynomial $x \mapsto p(x)$ on \mathbb{R}^{3} of total degree M the equivalence one has $\int_{S^{2}} p(x) \mathrm{d} x=\frac{1}{N} \sum_{i}^{N} p\left(x_{i}\right)$ holds.
Let m be the number of different inner products between distinct $\left\{x_{i}\right\}_{i=1}^{N}$. They form a sharp configuration if it is $2 m-1$ spherical design.

By [Cohen-Kumar'07, loc.cit.] sharp configurations are universally optimal meaning that they minimize any potential energy $f:[0,4] \rightarrow \mathbb{R}$ which is completely monotonous, i.e. it satisfies $(-1)^{k} f^{(k)} \geq 0$ for all $k \geq 0$. In three dimensions there are five sharp configurations:

- $N=2$, antipodal points

Universal optimality by Cohen and Kumar

Consider N points $\left\{x_{i}\right\}_{i=1}^{N}$ living on the unit sphere S^{2}. They form an M-spherical design if for any polynomial $x \mapsto p(x)$ on \mathbb{R}^{3} of total degree M the equivalence one has $\int_{S^{2}} p(x) \mathrm{d} x=\frac{1}{N} \sum_{i}^{N} p\left(x_{i}\right)$ holds.
Let m be the number of different inner products between distinct $\left\{x_{i}\right\}_{i=1}^{N}$. They form a sharp configuration if it is $2 m-1$ spherical design.

By [Cohen-Kumar'07, loc.cit.] sharp configurations are universally optimal meaning that they minimize any potential energy $f:[0,4] \rightarrow \mathbb{R}$ which is completely monotonous, i.e. it satisfies $(-1)^{k} f^{(k)} \geq 0$ for all $k \geq 0$. In three dimensions there are five sharp configurations:

- $N=2$, antipodal points
- $N=3$, simplex with inner product $-1 / 2$,

Universal optimality by Cohen and Kumar

Consider N points $\left\{x_{i}\right\}_{i=1}^{N}$ living on the unit sphere S^{2}. They form an M-spherical design if for any polynomial $x \mapsto p(x)$ on \mathbb{R}^{3} of total degree M the equivalence one has $\int_{S^{2}} p(x) \mathrm{d} x=\frac{1}{N} \sum_{i}^{N} p\left(x_{i}\right)$ holds.
Let m be the number of different inner products between distinct $\left\{x_{i}\right\}_{i=1}^{N}$. They form a sharp configuration if it is $2 m-1$ spherical design.

By [Cohen-Kumar'07, loc.cit.] sharp configurations are universally optimal meaning that they minimize any potential energy $f:[0,4] \rightarrow \mathbb{R}$ which is completely monotonous, i.e. it satisfies $(-1)^{k} f^{(k)} \geq 0$ for all $k \geq 0$. In three dimensions there are five sharp configurations:

- $N=2$, antipodal points
- $N=3$, simplex with inner product $-1 / 2$,
- $N=4$, tetrahedron - simplex with inner product $-1 / 3$,

Universal optimality by Cohen and Kumar

Consider N points $\left\{x_{i}\right\}_{i=1}^{N}$ living on the unit sphere S^{2}. They form an M-spherical design if for any polynomial $x \mapsto p(x)$ on \mathbb{R}^{3} of total degree M the equivalence one has $\int_{S^{2}} p(x) \mathrm{d} x=\frac{1}{N} \sum_{i}^{N} p\left(x_{i}\right)$ holds.
Let m be the number of different inner products between distinct $\left\{x_{i}\right\}_{i=1}^{N}$.
They form a sharp configuration if it is $2 m-1$ spherical design.
By [Cohen-Kumar'07, loc.cit.] sharp configurations are universally optimal meaning that they minimize any potential energy $f:[0,4] \rightarrow \mathbb{R}$ which is completely monotonous, i.e. it satisfies $(-1)^{k} f^{(k)} \geq 0$ for all $k \geq 0$. In three dimensions there are five sharp configurations:

- $N=2$, antipodal points
- $N=3$, simplex with inner product $-1 / 2$,
- $N=4$, tetrahedron - simplex with inner product $-1 / 3$,
- $N=6$, octahedron - cross polytope with inner products $-1,0$,

Universal optimality by Cohen and Kumar

Consider N points $\left\{x_{i}\right\}_{i=1}^{N}$ living on the unit sphere S^{2}. They form an M-spherical design if for any polynomial $x \mapsto p(x)$ on \mathbb{R}^{3} of total degree M the equivalence one has $\int_{S^{2}} p(x) \mathrm{d} x=\frac{1}{N} \sum_{i}^{N} p\left(x_{i}\right)$ holds.
Let m be the number of different inner products between distinct $\left\{x_{i}\right\}_{i=1}^{N}$.
They form a sharp configuration if it is $2 m-1$ spherical design.
By [Cohen-Kumar'07, loc.cit.] sharp configurations are universally optimal meaning that they minimize any potential energy $f:[0,4] \rightarrow \mathbb{R}$ which is completely monotonous, i.e. it satisfies $(-1)^{k} f^{(k)} \geq 0$ for all $k \geq 0$. In three dimensions there are five sharp configurations:

- $N=2$, antipodal points
- $N=3$, simplex with inner product $-1 / 2$,
- $N=4$, tetrahedron - simplex with inner product $-1 / 3$,
- $N=6$, octahedron - cross polytope with inner products $-1,0$,
- $N=12$, icosahedron with inner products $-1, \pm 1 / \sqrt{5}$.

Universal optimality by Cohen and Kumar

Consider N points $\left\{x_{i}\right\}_{i=1}^{N}$ living on the unit sphere S^{2}. They form an M-spherical design if for any polynomial $x \mapsto p(x)$ on \mathbb{R}^{3} of total degree M the equivalence one has $\int_{S^{2}} p(x) \mathrm{d} x=\frac{1}{N} \sum_{i}^{N} p\left(x_{i}\right)$ holds.
Let m be the number of different inner products between distinct $\left\{x_{i}\right\}_{i=1}^{N}$.
They form a sharp configuration if it is $2 m-1$ spherical design.
By [Cohen-Kumar'07, loc.cit.] sharp configurations are universally optimal meaning that they minimize any potential energy $f:[0,4] \rightarrow \mathbb{R}$ which is completely monotonous, i.e. it satisfies $(-1)^{k} f^{(k)} \geq 0$ for all $k \geq 0$. In three dimensions there are five sharp configurations:

- $N=2$, antipodal points
- $N=3$, simplex with inner product $-1 / 2$,
- $N=4$, tetrahedron - simplex with inner product $-1 / 3$,
- $N=6$, octahedron - cross polytope with inner products $-1,0$,
- $N=12$, icosahedron with inner products $-1, \pm 1 / \sqrt{5}$.

Remark: The remaining Platonic solids, cube and dodekahedron, do not qualify for universality having $\mathrm{m}=3$ and 4 , respectively

Universal optimality by Cohen and Kumar

Consider N points $\left\{x_{i}\right\}_{i=1}^{N}$ living on the unit sphere S^{2}. They form an M-spherical design if for any polynomial $x \mapsto p(x)$ on \mathbb{R}^{3} of total degree M the equivalence one has $\int_{S^{2}} p(x) \mathrm{d} x=\frac{1}{N} \sum_{i}^{N} p\left(x_{i}\right)$ holds.
Let m be the number of different inner products between distinct $\left\{x_{i}\right\}_{i=1}^{N}$.
They form a sharp configuration if it is $2 m-1$ spherical design.
By [Cohen-Kumar'07, loc.cit.] sharp configurations are universally optimal meaning that they minimize any potential energy $f:[0,4] \rightarrow \mathbb{R}$ which is completely monotonous, i.e. it satisfies $(-1)^{k} f^{(k)} \geq 0$ for all $k \geq 0$. In three dimensions there are five sharp configurations:

- $N=2$, antipodal points
- $N=3$, simplex with inner product $-1 / 2$,
- $N=4$, tetrahedron - simplex with inner product $-1 / 3$,
- $N=6$, octahedron - cross polytope with inner products $-1,0$,
- $N=12$, icosahedron with inner products $-1, \pm 1 / \sqrt{5}$.

Remark: The remaining Platonic solids, cube and dodekahedron, do not qualify for universality having $\mathrm{m}=3$ and 4 , respectively. Note that they do not represent Thomson problem solutions either!

Application to star leaky graphs

One may wonder what has the mentioned minimization problem to do with the maximization of the ground state eigenvalues

Application to star leaky graphs

One may wonder what has the mentioned minimization problem to do with the maximization of the ground state eigenvalues. The answer is that, as in the previously addressed cases, the problem is equivalent to minimization of the (norm of) the Birman-Schwinger operator. We have

Application to star leaky graphs

One may wonder what has the mentioned minimization problem to do with the maximization of the ground state eigenvalues. The answer is that, as in the previously addressed cases, the problem is equivalent to minimization of the (norm of) the Birman-Schwinger operator. We have

Lemma

Consider an N-arm star with edges of length $L \in(0, \infty]$ determined by unit vectors $\left\{\bar{\gamma}_{i}\right\}_{i=1}^{N}$, and let $\left\{\bar{\sigma}_{i}\right\}_{i=1}^{N}$ corresponds to a sharp-configuration star. Then we have

$$
\sum_{i, j i \neq j} T_{\kappa ; s, t}\left(\left|\bar{\gamma}_{i}-\bar{\gamma}_{j}\right|^{2}\right) \geq \sum_{i, j i \neq j} T_{\kappa ; s, t}\left(\left|\bar{\sigma}_{i}-\bar{\sigma}_{j}\right|^{2}\right)
$$

for any $s, t \in[0, L]$ and the inequality is sharp unless the two stars are congruent. Here $T_{\kappa ; s, t}(x):=\frac{e^{-\kappa \sqrt{a+b x}}}{4 \pi \sqrt{a+b x}}$ with $a=(s-t)^{2}$ and $b=s t$

Application to star leaky graphs, continued

Next we use the fact that the largest eigenvalue of the Birman-Schwinger operator corresponding to a sharp-configuration star has the maximum symmetry, $\tilde{f}_{\sigma}=\left(f_{\sigma}, \ldots, f_{\sigma}\right) \in \bigoplus_{1}^{N} L^{2}([0, L])$.

Application to star leaky graphs, continued

Next we use the fact that the largest eigenvalue of the Birman-Schwinger operator corresponding to a sharp-configuration star has the maximum symmetry, $\tilde{f}_{\sigma}=\left(f_{\sigma}, \ldots, f_{\sigma}\right) \in \bigoplus_{1}^{N} L^{2}([0, L])$.
Then $\sup Q_{\kappa, \gamma} \geq\left(Q_{\kappa, \gamma} \tilde{f}_{\sigma}, \tilde{f}_{\sigma}\right) \geq \sup Q_{\kappa, \sigma}$ holds according to the above lemma, which allows us to make the following conclusion:

Application to star leaky graphs, continued

Next we use the fact that the largest eigenvalue of the Birman-Schwinger operator corresponding to a sharp-configuration star has the maximum symmetry, $\tilde{f}_{\sigma}=\left(f_{\sigma}, \ldots, f_{\sigma}\right) \in \bigoplus_{1}^{N} L^{2}([0, L])$.
Then $\sup Q_{\kappa, \gamma} \geq\left(Q_{\kappa, \gamma} \tilde{f}_{\sigma}, \tilde{f}_{\sigma}\right) \geq \sup Q_{\kappa, \sigma}$ holds according to the above lemma, which allows us to make the following conclusion:

Theorem

Assume that $N \in\{2,3,4,6,12\}$, then the ground state energy of the N-arm leaky star assumes the unique maximum for $\gamma=\sigma$, where σ is the corresponds to the appropriate sharp configuration listed above.

[^9]
Application to star leaky graphs, continued

Next we use the fact that the largest eigenvalue of the Birman-Schwinger operator corresponding to a sharp-configuration star has the maximum symmetry, $\tilde{f}_{\sigma}=\left(f_{\sigma}, \ldots, f_{\sigma}\right) \in \bigoplus_{1}^{N} L^{2}([0, L])$.
Then $\sup Q_{\kappa, \gamma} \geq\left(Q_{\kappa, \gamma} \tilde{f}_{\sigma}, \tilde{f}_{\sigma}\right) \geq \sup Q_{\kappa, \sigma}$ holds according to the above lemma, which allows us to make the following conclusion:

Theorem

Assume that $N \in\{2,3,4,6,12\}$, then the ground state energy of the N-arm leaky star assumes the unique maximum for $\gamma=\sigma$, where σ is the corresponds to the appropriate sharp configuration listed above.
P.E., S. Kondej: Ground state optimization for leaky star graphs in dimension three, Lett. Math. Phys. 110 (2020), 735-751.

For other values of N the problem remains open; note that for a finite star the solutions may depend on the coupling constant α.

What to bring home from Lecture V

- In the strong coupling asymptotic regime leaky quantum structures behave as having effectively a lower dimension.

What to bring home from Lecture V

- In the strong coupling asymptotic regime leaky quantum structures behave as having effectively a lower dimension.
- The boundaries of the interaction support have in this regime the Dirichlet character.

What to bring home from Lecture V

- In the strong coupling asymptotic regime leaky quantum structures behave as having effectively a lower dimension.
- The boundaries of the interaction support have in this regime the Dirichlet character.
- Weakly bound states due to geometric perturbations behave like regular Schrödinger operators, powerlike for curves, exponential for surfaces.

What to bring home from Lecture V

- In the strong coupling asymptotic regime leaky quantum structures behave as having effectively a lower dimension.
- The boundaries of the interaction support have in this regime the Dirichlet character.
- Weakly bound states due to geometric perturbations behave like regular Schrödinger operators, powerlike for curves, exponential for surfaces.
- If the geometry of the interaction support is essentially two-dimensional, the ground state is typically maximized by configurations of maximum symmetry.

What to bring home from Lecture V

- In the strong coupling asymptotic regime leaky quantum structures behave as having effectively a lower dimension.
- The boundaries of the interaction support have in this regime the Dirichlet character.
- Weakly bound states due to geometric perturbations behave like regular Schrödinger operators, powerlike for curves, exponential for surfaces.
- If the geometry of the interaction support is essentially two-dimensional, the ground state is typically maximized by configurations of maximum symmetry.
- If it is truly three-dimensional, on the other hand, the optimization problem is considerably more involved.

[^0]: R
 P.E., S. Kondej: Strong-coupling asymptotic expansion for Schrödinger operators with a singular interaction supported by a curve in \mathbb{R}^{3}, Rev. Math. Phys. 16 (2004), 559-582.

[^1]: 曷
 P.E., S. Kondej: Strong coupling asymptotics for Schrödinger operators with an interaction supported by an open arc in three dimensions, Rep. Math. Phys. 77 (2016), 1-17.

[^2]: M.S. Ashbaugh, R.D. Benguria: A sharp bound for the ratio of the first two eigenvalues of Dirichlet Laplacians and extensions, Ann. Math. 135 (1992), 601-628.

[^3]: P.E., E.M. Harrell, M. Loss: Inequalities for means of chords, with application to isoperimetric problems, Lett. Math.

 Phys. 75 (2006), 242-233; addendum 77 (2006), 219.

[^4]: R P.E., E.M. Harrell, M. Loss: Inequalities for means of chords, with application to isoperimetric problems, Lett. Math. Phys. 75 (2006), 242-233; addendum 77 (2006), 219.

[^5]: P.E., M. Fraas: On geometric perturbations of critical Schrödinger operators with a surface interaction, J. Math. Phys. 50 (2009), 112101.

[^6]: a
 P.E., M. Fraas: On geometric perturbations of critical Schrödinger operators with a surface interaction, J. Math. Phys. 50 (2009), 112101.

[^7]: 10
 P.E., M. Fraas: On geometric perturbations of critical Schrödinger operators with a surface interaction, J. Math. Phys. 50 (2009), 112101.

[^8]: P.E., V. Lotoreichik: A spectral isoperimetric inequality for cones, Lett. Math. Phys. 107 (2017), 717-732.

[^9]: P.E., S. Kondej: Ground state optimization for leaky star graphs in dimension three, Lett. Math. Phys. 110 (2020), 735-751.

