
Constrained quantum dynamics

Pavel Exner

Doppler Institute

for Mathematical Physics and Applied Mathematics
Prague

With thanks to all my collaborators

A minicourse at the 2nd International Summer School on Advanced Quantum Mechanics

Prague, September 2-11, 2021

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture IV September 7, 2021 - 1 -



Some features of quantum graph models
Our encounter with quantum graphs revealed various properties of
these models. In this lecture we focus on two of them:

The first, which one may regard as their advantage is the multitude
of the ways to choose a proper – self-adjoint – vertex coupling.

This does not mean that ‘exotic’ couplings, different from Kirchhoff
or δ, must describe the complicated structures we discussed in Lecture
II; we may choose the coupling ad hoc to suit the physics of the effect
we want to describe. We are going to discuss a class of such models.

The other, which is rather a disadvantage comes from the fact that
particles are supposed to be strictly localized at the graph edges.
Should such a graph model, say, a network of actual semiconductor
wires, we face the fact that the quantum tunneling between different
part of the graph is neglected which, depending of the geometry of
the problem, may not be realistic.

This motivates us to present an alternative model describing ‘leaky’
quantum graphs, and their various generalizations.
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Hall effect
To motivate the first topic, let us recall one the most interesting and
important problems in solid-state physics, the Hall effect,

Source: Wikipedia

in which magnetic field induces a voltage perpendicular to the current.

In the quantum regime the corresponding conductivity is quantized with
a great precision – this fact lead already to two Nobel Prizes.

However, in ferromagnetic material one can observe a similar behavior
also in the absence of external magnetic field – being labeled anomalous.

In contrast to the ‘usual’ quantum Hall effect, its mechanism is not well
understood; it is conjectured that it comes from internal magnetization
in combination with the spin-orbit interaction.
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Modeling anomalous Hall effect

Recently a quantum-graph model of the AHE was proposed in which the
material structure of the sample is described by lattice of δ-coupled rings
(topologically equivalent to the square lattice we have seen already)

P. Sťreda, J. Kučera: Orbital momentum and topological phase transformation, Phys. Rev. B92 (2015), 235152.

Source: the cited paper

Looking at the picture we recognize a flaw in the model: to mimick
the rotational motion of atomic orbitals responsible for the magnetization,
the authors had to impose ‘by hand’ the requirement that the electrons
move only one way on the loops of the lattice. Naturally, such an
assumption cannot be justified from the first principles!
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Breaking the time-reversal invariance
On the other hand, it is possible to break the time-reversal invariance,
not at graph edges but in its vertices

. Consider an example: note that
for a vertex coupling U the on-shell S-matrix at the momentum k is

S(k) =
k − 1 + (k + 1)U

k + 1 + (k − 1)U
,

in particular, we have U = S(1). If we thus require that the coupling
leads to the ‘maximum rotation’ at k = 1, it is natural to choose

U =



0 1 0 0 · · · 0 0

0 0 1 0 · · · 0 0

0 0 0 1 · · · 0 0

· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 1

1 0 0 0 · · · 0 0


,

Writing the coupling componentwise for vertex of degree N, we have

(ψj+1 − ψj) + i(ψ′j+1 + ψ′j) = 0 , j ∈ Z (modN) ,

which is non-trivial for N ≥ 3 and obviously non-invariant w.r.t. the
reverse in the edge numbering order, or equivalently, w.r.t. the complex
conjugation representing the time reversal.
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Star graphs: spectrum and scattering
Consider first a star graph with N semi-infinite edges and the above
coupling. Obviously, we have σess(H) = R+

. It is also easy to check that
H has eigenvalues −κ2, where

κ = tan
πm

N

with m running through 1, . . . , [N2 ] for N odd and 1, . . . , [N−1
2 ] for N even.

Thus σdisc(H) is always nonempty, in particular, H has a single negative
eigenvalue for N = 3, 4 which is equal to −3 and −1, respectively.

As for the scattering, we know that S(k) = k−1+(k+1)U
k+1+(k−1)U . It might seem

that transport becomes trivial at small and high energies, since it looks
like we have limk→0 S(k) = −I and limk→∞ S(k) = I .

However, caution is needed; the formal limits lead to a false result if
+1 or −1 are eigenvalues of U. A counterexample is the (scale invariant)
Kirchhoff coupling where U has only ±1 as its eigenvalues; the on-shell
S-matrix is then independent of k and it is not a multiple of the identity.
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The vertex parity enters the game

Denoting for simplicity η := 1−k
1+k , a straightforward computation gives

Sij(k) =
1− η2

1− ηN
{
−η 1− ηN−2

1− η2
δij + (1− δij) η(j−i−1)(modN)

}
,

in particular, for N = 3, 4, respectively, we get

1 + η

1 + η + η2

 − η
1+η

1 η

η − η
1+η

1

1 η − η
1+η

 and
1

1 + η2


−η 1 η η2

η2 −η 1 η

η η2 −η 1

1 η η2 −η


We see that limk→∞ S(k) = I holds for N = 3 and more generally for
all odd N, while for the even ones the limit is not a multiple of identity.
This is is related to the fact that in the latter case U has both ±1 as its
eigenvalues, while for N odd −1 is missing.

Let us look how this fact influences spectra of periodic quantum graphs.
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η − η
1+η

1

1 η − η
1+η

 and
1

1 + η2


−η 1 η η2

η2 −η 1 η

η η2 −η 1

1 η η2 −η


We see that limk→∞ S(k) = I holds for N = 3 and more generally for
all odd N, while for the even ones the limit is not a multiple of identity.
This is is related to the fact that in the latter case U has both ±1 as its
eigenvalues, while for N odd −1 is missing.

Let us look how this fact influences spectra of periodic quantum graphs.
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Comparison of two lattices

0
0 0

Spectral condition for the two cases are easy to derive,

16i ei(θ1+θ2) k sin k`
[
(k2 − 1)(cos θ1 + cos θ2) + 2(k2 + 1) cos k`

]
= 0

and respectively

16i e−i(θ1+θ2) k2 sin k`
(

3 + 6k2 − k4 + 4dθ(k2 − 1) + (k2 + 3)2 cos 2k`
)

= 0 ,

where dθ := cos θ1 + cos(θ1 − θ2) + cos θ2 and 1
` (θ1, θ2) ∈ [−π

` ,
π
` ]2 is the

quasimomentum. They are tedious to solve except the flat band cases,
sin k` = 0, however, we can present the band solution in a graphical form

P.E., M. Tater: Quantum graphs with vertices of a preferred orientation, Phys. Lett. A382 (2018), 283–287.
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A picture is worth of thousand words

For the two lattices, respectively, we get (with ` = 3
2 , dashed ` = 1

4 )
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Comparison summary

Some features are common:

the number of open gaps is always infinite

the gaps are centered around the flat bands except the lowest one

for some values of ` a band may degenerate

the negative spectrum is always nonempty, the gaps become
exponentially narrow around star graph eigenvalues as `→∞

But the high energy behavior of these lattices is substantially different:

the spectrum is dominated by bands for square lattices

it is dominated by gaps for hexagonal lattices

Naturally, this is not the only way to break the time symmetry. A simple
modification is to change the inherent length scale replacing the above
matching condition by (ψj+1 − ψj) + i`(ψ′j+1 + ψ′j) = 0 for some ` > 0.
This does not matter for stars, of course, but it already does for lattices.

Let us mention one more involved choice of the vertex coupling.
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An interpolation

One can interpolate between the δ-coupling and the present one taking
e.g., for U the circulant matrix with the eigenvalues

λk (t) =

 e−i(1−t)γ for k = 0;

− eiπt(
2k
n
−1) for k ≥ 1

for all t ∈ [0, 1], where n−iα
n+iα = e−iγ

. Taking, for instance, α = 0 and

−4(
√

2 + 1), respectively, we have the following spectral patterns
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P.E., O. Turek, M. Tater: A family of quantum graph vertex couplings interpolating between different symmetries,
J. Phys. A: Math. Theor. 51 (2018), 285301.
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Another topic: band edges positions
Looking for extrema of the dispersion functions, people usually seek
them at the border of the respective Brillouin zone

. Quantum graphs
provide a warning: there are examples of a periodic graph in which
(some) band edges correspond to internal points of the Brillouin zone

J.M. Harrison, P. Kuchment, A. Sobolev, B. Winn: On occurrence of spectral edges for periodic operators inside the
Brillouin zone, J. Phys. A: Math. Theor. 40 (2007), 7597–7618.

P.E., P. Kuchment, B. Winn: On the location of spectral edges in Z-periodic media, J. Phys. A: Math. Theor. 43 (2010),
474022.

The second one shows that this may be true even for graphs periodic in
one direction

The number of connecting edges had to be N ≥ 2. An example:
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Band edges, continued

In the same paper we showed that if N = 1, the band edges correspond
to periodic and antiperiodic solutions

However, we did it under that assumption that the system is invariant
w.r.t. time reversal. To show that this assumption was essential consider
a comb-shaped graph with our non-invariant coupling at the vertices

r r r r r r r r r r
Its analysis shows:

two-sided comb is transport-friendly, bands dominate

one-sided comb is transport-unfriendly, gaps dominate

sending the one side edge lengths to zero in a two-sided comb
does not yield one-sided comb transport

and what about the dispersion curves?
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Two-sided comb: dispersion curves
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P.E., Daniel Vašata: Spectral properties of Z periodic quantum chains without time reversal invariance, in preparation

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture IV September 7, 2021 - 14 -



Discrete symmetry: Platonic solid graphs
Topological properties of our vertex coupling can be manifested in
many other ways

. Consider, e.g., finite equilateral graphs consisting
of Platonic solids edges

Source: Wikipedia Commons

and assume the described coupling in the vertices. The corresponding
spectra are discrete but their high-energy behavior differs:

for tetrahedron, cube, icosahedron, and dodecahedron the square
roots of ev’s approach integer multiples of π with an O(k−1) error

octahedron also has such eigenvalues, but in addition it has two
other series: those behaving as k = 2πn ± 2

3π for n ∈ Z, and as
k = πn + 1

2π with an O(k−2) error

no such distinction exists for more common couplings such as δ
P.E., J. Lipovský: Spectral asymptotics of the Laplacian on Platonic solids graphs, J. Math. Phys. 60 (2019), 122101
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P.E., J. Lipovský: Spectral asymptotics of the Laplacian on Platonic solids graphs, J. Math. Phys. 60 (2019), 122101

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture IV September 7, 2021 - 15 -



Discrete symmetry: Platonic solid graphs
Topological properties of our vertex coupling can be manifested in
many other ways. Consider, e.g., finite equilateral graphs consisting
of Platonic solids edges

Source: Wikipedia Commons

and assume the described coupling in the vertices. The corresponding
spectra are discrete but their high-energy behavior differs:

for tetrahedron, cube, icosahedron, and dodecahedron the square
roots of ev’s approach integer multiples of π with an O(k−1) error

octahedron also has such eigenvalues, but in addition it has two
other series

: those behaving as k = 2πn ± 2
3π for n ∈ Z, and as

k = πn + 1
2π with an O(k−2) error

no such distinction exists for more common couplings such as δ
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Another periodic graph model

Let us look what this coupling influences graphs periodic in one direction

.
Consider again a loop chain, first tightly connected
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The spectrum of the corresponding Hamiltonian looks as follows:

Theorem

The spectrum of H0 consists of the absolutely continuous part which
coincides with the interval [0,∞), and a family of infinitely degenerate
eigenvalues, the isolated one equal to −1, and the embedded ones equal
to the positive integers.

M. Baradaran, P.E., M. Tater: Ring chains with vertex coupling of a preferred orientation, Rev. Math. Phys.33 (2021),
2060005.
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A loosely connected chain
Replace the direct coupling of adjacent rings by connecting segments
of length ` > 0, still with the same vertex coupling.
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Theorem

The spectrum of H` has for any fixed ` > 0 the following properties:

Any non-negative integer is an eigenvalue of infinite multiplicity.
Away of the non-negative integers the spectrum is absolutely
continuous having a band-and-gap structure.
The negative spectrum is contained in (−∞,−1) consisting of a single
band if ` = π, otherwise there is a pair of bands and −3 6∈ σ(H`).
The positive spectrum has infinitely many gaps.
Pσ(H`) := limK→∞

1
K |σ(H`) ∩ [0,K ]| = 0 holds for any ` > 0.
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The limit `→ 0+

The quantity Pσ(H`) in the last claim of the theorem is the probability
of being in the spectrum, mentioned in Lecture III and introduced in

R. Band, G. Berkolaiko: Universality of the momentum band density of periodic networks, Phys. Rev. Lett. 113
(2013), 130404.

Having in mind the role of the vertex parity, one naturally asks what
happens if the the connecting links lengths shrink to zero. From the
general result derived in

G. Berkolaiko, Y. Latushkin, S. Sukhtaiev: Limits of quantum graph operators with shrinking edges,
Adv. Math. 352 (2019), 632–669.

we know that σ(H`)→ σ(H0) in the set sense as `→ 0+.

We have, however, obviously Pσ(H0) = 1, hence our example shows that
the said convergence may be rather nonuniform!

Note also that if we violate the mirror symmetry of the chain, we have
instead Pσ(H0) = 1

2 independently of where exactly we place the vertex.

M. Baradaran, P.E., M. Tater: Spectrum of periodic chain graphs with time-reversal non-invariant vertex coupling,
arXiv:2012.14344.
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One more example: transport properties

Consider strips cut of the following two types of lattices:

ℓ2

ℓ1

. . .

...

...

g1 g2 g3 g4 gN gN+1

f1 f2 f3 fN

ℓ2

ℓ2

ℓ1

ℓ3

g1

h1

f1

e1

g2

h2

f2

e2

g3

h3

f3

e3

gN

hN

fN

eN

hN+1

gN+1

. . .

...

...

In both cases we impose the ‘rotating’ coupling at the vertices

. By
Floquet decomposition we are able reduce the task to investigation of a
‘one cell layer’. We use the Ansatz aeikx + be−ikx for the wave functions
e, fj , gj , hj with the appropriate coefficients at the graphs edges

This time we ask in which part of the ‘guide’ are the generalized
eigenfunction dominantly supported
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Transport properties, continued

Theorem

In the rectangular-lattice strip, for a fixed K ∈
(
0, 1

2π
)
, consider k > 0

obeying k 6∈ ⋃n∈N0

(
nπ−K
`2

, nπ+K
`2

)
. With the natural normalization of the

generalized eigenfunction corresponding to energy k2, its components at
the leftmost and rightmost vertical edges are of order O(k−1) as k →∞.

In the ‘brick-lattice’ strip, consider momenta k > 0 such that

k 6∈
⋃

n∈N0

(
nπ − K

`1
,
nπ + K

`1

)
∪
⋃

n∈N0

(
nπ − K

`2
,
nπ + K

`2

)
∪
⋃

n∈N0

(
nπ − K

`3
,
nπ + K

`3

)
.

Adopting the same normalization as above and denoting by q
(m)
j with

m = 1, . . . , 8, the coefficients of wave function components for the edges
directed down and right from vertices of the jth vertical line, we have

q
(m)
j = O(k1−j) as k →∞.

P. Exner, J. Lipovský: Topological bulk-edge effects in quantum graph transport, Phys. Lett. A384 (2020), 126390

Remark: Note that the ‘brick-lattice’ strip is not a topological insulator!
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Leaky quantum graphs and their generalizations
Let us turn to the quantum graph weakness mentioned in the opening
and try to find an alternative. The model we are going to examine now
is based on singular Schrödinger operators that can formally written as

Hα,Γ = −∆−αδ(x − Γ), α > 0,

in L2(Rd), where Γ is a graph understood as a subset of Rd .

Why is it interesting? One can expect that a particle in a state from the
negative spectral subspace will remain localized close to Γ, the closer the
larger is the coupling strength α, and at the same time, the whole Rd is
accessible to it, so it can tunnel from one point to another.

In fact, the dimension of Γ is not that important – what matters is rather
its codimension – and we begin with the simplest situation where Γ is a
smooth manifold in Rd having in mind primarily three important cases:

curves in R2, surfaces in R3, and curves in R3

We can regard them as waveguides of a sort, with a finite size of the
transverse localization, and building blocks of more complicated structures.
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A δ-interaction supported by a manifold
A natural way to define a singular Schrödinger operator on manifold
of codim Γ = 1 is to employ the appropriate quadratic form, namely

qδ,α[ψ] := ‖∇ψ‖2
L2(Rd ) − α‖f |Γ‖2

L2(Γ)

with the domain H1(Rd) and to use the first representation theorem to
define a unique self-adjoint operator Hα,Γ

; it is enough that Γ is Lipschitz
J. Behrndt, P.E., M. Holzmann, V. Lotoreichik: Approximation of Schrödinger operators with δ-interactions supported
on hypersurfaces, Math. Nachr. 290 (2017), 1215–1248.

If Γ is a smooth manifold with codim Γ = 1 one can alternatively use
boundary conditions: Hα,Γ acts as −∆ on functions from H2

loc(Rd \ Γ),
which are continuous and exhibit a normal-derivative jump,

∂ψ

∂n
(x)

∣∣∣∣
+

− ∂ψ

∂n
(x)

∣∣∣∣
−

= −α(x)ψ(x)

This explains the formal expression as describing the attractive
δ-interaction of strength α(x) perpendicular to Γ at the point x .

Alternatively, one sometimes uses the symbol −∆δ,α for this operator;
we will be mostly concerned with the situation where α is a constant.
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The case codim Γ = 2

This is more complicated but one can use again boundary conditions,
appropriately modified. To begin with, for an infinite curve Γ referring to
a map γ : R→ R3 we have to assume in addition that there is a tubular
neighbourhood of Γ which does not intersect itself

We employ Frenet’s frame (t(s), b(s), n(s)) for Γ. Given ξ, η ∈ R, we set
r = (ξ2+η2)1/2 and define family of ‘shifted’ curves

t

b

n

Γ
Γr

Γr ≡ Γξηr :=
{
γr (s) ≡ γξηr (s) := γ(s) + ξb(s) + ηn(s)

}
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The case codim Γ = 2, continued
The restriction of f ∈W 2,2

loc (R3 \ Γ) to Γr is well defined for small r ;

we say that f ∈W 2,2
loc (R3 \ Γ) ∩ L2(R3) belongs to Υ if the limits

Ξ(f )(s) := − lim
r→0

1

ln r
f �Γr

(s),

Ω(f )(s) := lim
r→0

[
f �Γr

(s) + Ξ(f )(s)ln r
]
,

exist a.e. in R, are independent of the direction 1
r (ξ, η) in which they are

taken, and define functions belonging to L2(R).

Then the corresponding singular Schrödinger operator Hα,Γ has the domain

{ g ∈ Υ : 2παΞ(g)(s) = Ω(g)(s) }
and acts as

−Hα,Γf = −∆f for x ∈ R3 \ Γ

Note that absence of the interaction corresponds α =∞ !

Similarly one can treat the case codim Γ = 3, replacing 1
2π ln r by 1

4πr , but
this is more a mathematical exercise.
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Spectral analysis: Birman-Schwinger principle

Theorem (Birman-Schwinger principle)

Let Hλ := H0 + λV on L2(Rd), where H0 = −∆ and V belongs to a
suitable class. Then −κ2 is an eigenvalue of Hλ for some κ > 0 if and
only if the operator

Kκ := |V |1/2(H0+ κ2)−1V 1/2

has eigenvalue −λ−1, and moreover, their multiplicities are the same.

For singular Schrödinger operators we consider here this makes no sense,
but we have an analogous result in which the above Kκ is replaced by an
integral operator on L2(Γ) with the kernel (H0+ κ2)−1(·, ·).

For instance, if Γ is a curve in the plane, Hα,Γ has eigenvalue −κ2 if and
only if

α

2π

∫
Γ
K0(κ|Γ(s)− Γ(s ′)|)φ(s ′)ds ′ = φ(s),

where s is the arc length of the curve Γ.
J.F. Brasche, P.E., Yu.A. Kuperin, P. Šeba: Schrödinger operators with singular interactions, J. Math. Anal. Appl. 184
(1994), 112–139.
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Spectrum of −∆δ,α

The spectrum is determined both by the geometry of Γ and the coupling
function α, in particular, by its sign.

If Γ is compact, it is easy to see that σess(−∆δ,α) = R+.

On the other hand, the essential spectrum may change if the support Γ is
non-compact. As an example, take a line in the plane and suppose that α
is constant and positive; by separation of variables we find easily that
σess(−∆δ,α) = [−1

4α
2,∞) .

The question about the discrete spectrum is more involved. Suppose first
that interaction support is finite, |Γ| <∞.

It is clear that σdisc(−∆δ,α) = ∅ if the interaction is repulsive, α ≤ 0.
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Spectrum of −∆δ,α

On the other hand, the existence of a negative discrete spectrum for
an attractive coupling is dimension dependent.

Consider for simplicity a constant α. For d = 2 bound states then exist
whenever |Γ| > 0, in particular, we have a weak-coupling expansion

λ(α) =
(
CΓ + o(1)

)
exp

(
− 4π

α|Γ|

)
as α|Γ| → 0+

S. Kondej, V. Lotoreichik: Weakly coupled bound state of 2-D Schrödinger operator with potential-measure, J. Math.
Anal. Appl. 420 (2014), 1416–1438.

On the other hand, for d = 3 the singular coupling must exceed a critical
value. As an example, let Γ be a sphere of radius R > 0 in R3, then we
have

σdisc(Hα,Γ) 6= ∅ if and only if αR > 1,

and the same obviously holds in dimensions d > 3.

J.-P. Antoine, F. Gesztesy, J. Shabani: Exactly solvable models of sphere interactions in quantum mechanics, J. Phys. A:
Mat. Gen. 20 (1987), 3687–3712.

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture IV September 7, 2021 - 27 -



Spectrum of −∆δ,α

On the other hand, the existence of a negative discrete spectrum for
an attractive coupling is dimension dependent.

Consider for simplicity a constant α. For d = 2 bound states then exist
whenever |Γ| > 0, in particular, we have a weak-coupling expansion

λ(α) =
(
CΓ + o(1)

)
exp

(
− 4π

α|Γ|

)
as α|Γ| → 0+

S. Kondej, V. Lotoreichik: Weakly coupled bound state of 2-D Schrödinger operator with potential-measure, J. Math.
Anal. Appl. 420 (2014), 1416–1438.

On the other hand, for d = 3 the singular coupling must exceed a critical
value. As an example, let Γ be a sphere of radius R > 0 in R3, then we
have

σdisc(Hα,Γ) 6= ∅ if and only if αR > 1,

and the same obviously holds in dimensions d > 3.

J.-P. Antoine, F. Gesztesy, J. Shabani: Exactly solvable models of sphere interactions in quantum mechanics, J. Phys. A:
Mat. Gen. 20 (1987), 3687–3712.

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture IV September 7, 2021 - 27 -



Spectrum of −∆δ,α

On the other hand, the existence of a negative discrete spectrum for
an attractive coupling is dimension dependent.

Consider for simplicity a constant α. For d = 2 bound states then exist
whenever |Γ| > 0, in particular, we have a weak-coupling expansion

λ(α) =
(
CΓ + o(1)

)
exp

(
− 4π

α|Γ|

)
as α|Γ| → 0+

S. Kondej, V. Lotoreichik: Weakly coupled bound state of 2-D Schrödinger operator with potential-measure, J. Math.
Anal. Appl. 420 (2014), 1416–1438.

On the other hand, for d = 3 the singular coupling must exceed a critical
value. As an example, let Γ be a sphere of radius R > 0 in R3, then we
have

σdisc(Hα,Γ) 6= ∅ if and only if αR > 1,

and the same obviously holds in dimensions d > 3.

J.-P. Antoine, F. Gesztesy, J. Shabani: Exactly solvable models of sphere interactions in quantum mechanics, J. Phys. A:
Mat. Gen. 20 (1987), 3687–3712.

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture IV September 7, 2021 - 27 -



Spectrum of −∆δ,α

On the other hand, the existence of a negative discrete spectrum for
an attractive coupling is dimension dependent.

Consider for simplicity a constant α. For d = 2 bound states then exist
whenever |Γ| > 0, in particular, we have a weak-coupling expansion

λ(α) =
(
CΓ + o(1)

)
exp

(
− 4π

α|Γ|

)
as α|Γ| → 0+

S. Kondej, V. Lotoreichik: Weakly coupled bound state of 2-D Schrödinger operator with potential-measure, J. Math.
Anal. Appl. 420 (2014), 1416–1438.

On the other hand, for d = 3 the singular coupling must exceed a critical
value. As an example, let Γ be a sphere of radius R > 0 in R3, then we
have

σdisc(Hα,Γ) 6= ∅ if and only if αR > 1,

and the same obviously holds in dimensions d > 3.

J.-P. Antoine, F. Gesztesy, J. Shabani: Exactly solvable models of sphere interactions in quantum mechanics, J. Phys. A:
Mat. Gen. 20 (1987), 3687–3712.

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture IV September 7, 2021 - 27 -



A δ-interaction supported by infinite curves
A geometrically induced discrete spectrum may exist even if Γ is
infinite and inf σess(−∆δ,α) < 0. Consider, for instance, a non-straight,
piecewise C 1-smooth curve Γ : R→ R2 parameterized by its arc length,
|Γ(s)− Γ(s ′)| ≤ |s − s ′|, assuming in addition that

|Γ(s)− Γ(s ′)| ≥ c |s − s ′| holds for some c ∈ (0, 1)

Γ is asymptotically straight: there are d > 0, µ > 1
2

and ω ∈ (0, 1) such that

1− |Γ(s)− Γ(s ′)|
|s − s ′| ≤ d

[
1 + |s + s ′|2µ

]−1/2

in the sector Sω :=
{

(s, s ′) : ω < s
s′ < ω−1

}
Theorem

Under these assumptions, σess(−∆δ,α) = [−1
4α

2,∞) and −∆δ,α has at
least one eigenvalue below the threshold −1

4α
2.

P. Exner, T. Ichinose: Geometrically induced spectrum in curved leaky wires, J. Phys. A34 (2001), 1439–1450.
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Geometrically induced bound states, continued

The result is obtained via (generalized) Birman-Schwinger
principle regarding the bending a perturbation of the straight line.

The crucial observation is that – in view of the 2D free resolvent
kernel properties – this perturbation is sign definite and compact.

The best way to illustrate the main steps of the proof is to draw
the spectrum of Birman-Schwinger operator in dependence on the
spectral parameter κ.
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Pictorial sketch of the proof

in the straight case σ(Rκα,Γ0
) = [0, 1

2α] is checked directly

using a trial function one proves that supσ(Rκα,Γ) > 1
2α

from the asymptotic straightness, the perturbation is compact
so that the ‘added’ spectrum consists of eigenvalues at most

the spectrum depends continuously on κ and shrinks to zero
as κ→∞, hence there is a crossing to the right of 1

2α
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Geometrically induced bound states, continued

Higher codimension: for a curve in R3 which is bent or locally
deformed but asymptotically straight we have an analogous result
under slightly stronger regularity assumptions.

P. Exner, S. Kondej: Curvature-induced bound states for a δ interaction supported by a curve in R3, Ann. Henri
Poincaré 3 (2002), 967–981.

Higher dimensions: here the situation is more complicated; for
smooth curved surfaces Γ ⊂ R3 an analogous result is proved in
the strong coupling asymptotic regime, α→∞, only.

P. Exner, S. Kondej: Bound states due to a strong δ interaction supported by a curved surface, J. Phys. A:
Math. Gen. 36 (2003), 443–457.

On the other hand, we have an example of a conical surface of an
opening angle θ ∈ (0, 1

2π) in R3, where for any constant α > 0 we
have σess(−∆δ,α) = R+ and an infinite numbers of eigenvalues
below −1

4α
2 accumulating at the threshold.

J. Behrndt, P.E., V. Lotoreichik: Schrödinger operators with δ-interactions supported on conical surfaces,
J. Phys. A: Math. Theor. 47 (2014), 355202.
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Geometrically induced bound states, continued

Moreover, the above result remain valid for any local deformation
of the conical surface. We also know the eigenvalue accumulation
rate for conical layers

N
−1

4α
2 − E

(−∆δ,α) ∼ cot θ

4π
| lnE | , E → 0+ ,

and a similar formula holds for noncylindrical cones.
V. Lotoreichik, T. Ourmières-Bonafos: On the bound states of Schrödinger operators with δ-interactions on
conical surfaces, Comm. PDE 41 (2016), 999–1028.

T. Ourmières-Bonafos, K. Pankrashkin: Discrete spectrum of interactions concentrated near conical surfaces,
Appl. Anal. 97 (2018) 1628–1649.

On the other hand, the result is again dimension-dependent:
for a conical surface in Rd , d > 3, we have σdisc(−∆δ,α) = ∅
Implications for more complicated Lipschitz partitions: let Γ̃ ⊃ Γ
holds in the set sense, then Hα,Γ̃ ≤ Hα,Γ. If the essential spectrum
thresholds are the same – which is often easy to establish – then
σdisc(Hα,Γ̃) 6= ∅ whenever the same is true for σdisc(Hα,Γ)

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture IV September 7, 2021 - 32 -



Geometrically induced bound states, continued

Moreover, the above result remain valid for any local deformation
of the conical surface. We also know the eigenvalue accumulation
rate for conical layers

N
−1

4α
2 − E

(−∆δ,α) ∼ cot θ

4π
| lnE | , E → 0+ ,

and a similar formula holds for noncylindrical cones.
V. Lotoreichik, T. Ourmières-Bonafos: On the bound states of Schrödinger operators with δ-interactions on
conical surfaces, Comm. PDE 41 (2016), 999–1028.

T. Ourmières-Bonafos, K. Pankrashkin: Discrete spectrum of interactions concentrated near conical surfaces,
Appl. Anal. 97 (2018) 1628–1649.

On the other hand, the result is again dimension-dependent:
for a conical surface in Rd , d > 3, we have σdisc(−∆δ,α) = ∅

Implications for more complicated Lipschitz partitions: let Γ̃ ⊃ Γ
holds in the set sense, then Hα,Γ̃ ≤ Hα,Γ. If the essential spectrum
thresholds are the same – which is often easy to establish – then
σdisc(Hα,Γ̃) 6= ∅ whenever the same is true for σdisc(Hα,Γ)

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture IV September 7, 2021 - 32 -



Geometrically induced bound states, continued

Moreover, the above result remain valid for any local deformation
of the conical surface. We also know the eigenvalue accumulation
rate for conical layers

N
−1

4α
2 − E

(−∆δ,α) ∼ cot θ

4π
| lnE | , E → 0+ ,

and a similar formula holds for noncylindrical cones.
V. Lotoreichik, T. Ourmières-Bonafos: On the bound states of Schrödinger operators with δ-interactions on
conical surfaces, Comm. PDE 41 (2016), 999–1028.

T. Ourmières-Bonafos, K. Pankrashkin: Discrete spectrum of interactions concentrated near conical surfaces,
Appl. Anal. 97 (2018) 1628–1649.

On the other hand, the result is again dimension-dependent:
for a conical surface in Rd , d > 3, we have σdisc(−∆δ,α) = ∅
Implications for more complicated Lipschitz partitions: let Γ̃ ⊃ Γ
holds in the set sense, then Hα,Γ̃ ≤ Hα,Γ. If the essential spectrum
thresholds are the same – which is often easy to establish – then
σdisc(Hα,Γ̃) 6= ∅ whenever the same is true for σdisc(Hα,Γ)

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture IV September 7, 2021 - 32 -



Approximation of the singular interaction
The question naturally arises about the meaning of such models

. To
address it, let Γ be a C 4 smooth curve in R2 with a strip neighborhood
which does not intersect itself, parametrized by the locally orthogonal
coordinates s, u mentioned in Lecture I.

Given a fixed function V ∈ L∞(−1, 1) we consider potentials with the
support in the strip Σε := {(s, u) : |u| < ε} given by

Vε(x) =

{
0 v 6∈ Σε

−1
εV
(
u
ε

)
v ∈ Σε

In [E-Ichinose’01, loc.cit.] we proved the following convergence result:

−∆ + Vε → Hα,Γ in the norm-resolvent sense as ε→ 0,

where α :=
∫ 1
−1 V (u) du. This claim can be substantially generalized as

shown in [Behrndt-E-Holzmann-Lotoreichik’17, loc.cit.], where

Γ is a C 2-smooth orientable surface, codim Γ = 1, in Rn, n ≥ 2,
the ‘target’ coupling strength α is any L∞ function on Γ, modulo
some technical assumptions.
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−1 V (u) du. This claim can be substantially generalized as

shown in [Behrndt-E-Holzmann-Lotoreichik’17, loc.cit.], where

Γ is a C 2-smooth orientable surface, codim Γ = 1, in Rn, n ≥ 2,
the ‘target’ coupling strength α is any L∞ function on Γ, modulo
some technical assumptions.
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Point interaction approximation
The above approximation gives meaning to the δ interaction but it
useless for computational purposes. To get a practical tool to solve the
spectral problem for our operators, we replace the singular interaction
supported by Γ by an array Y = {yj} of point interactions

We employ generalized boundary values at yj ∈ Y using the expansion

ψ(x) = − 1

2π
log |x − yj | L0(ψ, yj) + L1(ψ, yj) +O(|x − yj |)

a local self-adjoint extension is then given by

L1(ψ, yj)− αL0(ψ, yj) = 0 , α ∈ R

S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden: Solvable Models in Quantum Mechanics, second edition, Amer.
Math. Soc., Providence, R.I., 2005.

To guess how the coupling parameters of the point interaction should be
chosen one can compare Hα,Γ for a straight Γ with the solvable model of
a straight-polymer

← r r r r r r r rαn

`/n
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Point interaction approximation, contd.

To get the same spectral threshold we need αn = αn which naturally
means that individual point interactions get weaker. Hence we
approximate Hα,Γ by point-interaction Hamiltonians Hαn,Yn with
αn = α|Yn|, where |Yn| := ]Yn

. Then we have

Theorem

Let a family {Yn} of finite sets Yn ⊂ Γ ⊂ R2 be such that

1

|Yn|
∑
y∈Yn

f (y) →
∫

Γ
f dm

holds for any bounded continuous f : Γ→ C, together with technical
conditions, then Hαn,Yn → Hα,Γ in the strong resolvent sense as n→∞.

P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction Hamiltonians, J. Phys. A36 (2003),
10173–10193.
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Point interaction approximation: remarks

The limit is a homogenization of a sort

. Eigenfunctions of the
approximating operator which look as
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will in the limit produce the corresponding eigenfunction of Hα,Γ,
continuous and locally bounded at the curve Γ having a jump of the
normal derivative there (the convergence is slower than O(n−1)).

Similarly one can approximate surfaces Γ by 3D point interactions.
J.F. Brasche, R. Figari, A. Teta: Singular Schrödinger operators as limits of point interaction Hamiltonians,
Potential Anal. 8 (1998), 163–178.

There is a trick: consider approximation of ε∆2 −∆− αδ(x − Γ)
and then take ε→ 0; this gives a norm-resolvent convergence.

J.F. Brasche, K. Ožanová: Convergence of Schrödinger operators, SIAM J. Math. Anal. 39 (2007), 281–297.
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An application: scattering on leaky wires

To give an example how one can use the approximation, consider
the scattering problem on a leaky graph with semi-infinite ‘leads’.
What is known and expected in this case?

What is the ‘free’ operator? Obviously −∆ is not a good
candidate, rather Hα,Γ for a straight line Γ; recall that we are
particularly interested in energy interval (−1

4α
2, 0), i.e. the

one-dimensional transport of states laterally bound to Γ.

Existence and completeness was proved if the external leads
belong to a line; there is also a general existence result.

P.E., S. Kondej: Scattering by local deformations of a straight leaky wire, J. Phys. A38 (2005), 4865–4874.

J. Dittrich: Scattering of particles bounded to infinite planar curve, Rev. Math. Phys. 32 (2020), 2050029.

It is expected that for strong coupling the states are strongly
transversally localized and the motion would be effectively
one-dimensional, while generally the tunneling may play role.
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An example: a bottleneck curve

Recall a well-known physicist’s trick to study resonances by exploring
spectral properties of the problem cut to a finite length L and to look
for avoided crossings in the L eigenvalue dependence.

G.A. Hagedorn, B. Meller: Resonances in a box, J. Math. Phys. 41 (2000), 103–117.

Consider a straight line deformation
which shaped as an open loop with a
bottleneck the width a of which we
will vary ←→

a

← → ← →
L L

If Γ is a straight line, the transverse eigenfunction is e−α|y |/2, hence
the distance at which tunneling becomes significant is ≈ 4α−1. In the
example, we choose α = 1.
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An example: a bottleneck curve
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Even narrower one, a = 1.9

We see that if the bottleneck width is small enough, the system exhibits
resonances, obviously caused by tunneling between adjacent parts.

Those are absent in the ‘conventional’ quantum graph where the curve is
equivalent to a straight line, and this cannot be changed even if we add
a curvature-induced potential, say, −1

4γ(s)2; to see that, it is enough to
‘flip’ one half of the curve.
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What to bring home from Lecture IV

Also some ‘unusual’ vertex couplings may be of physical interest.

Graphs can provide example warning against risks of ‘folklore’
methods of using PDEs.

Schrödinger operators with singular interactions provided us with
alternative ways to describe guided dynamics.

In this framework again, geometry can determine spectral properties.

We have efficient computational tools to treat these problems.

Leaky quantum structures reveal effects inaccessible within more
conventional models.
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