Coupled-Cluster-Based Methods for Open-Shell

Electronic States, The Fock Space Approach

Arik Landau

The Coupled-Cluster Equations

equation for the cluster operator S is obtained
from the linked- diagram formula
$$[\Omega, H_0] = (QV\Omega)_{\text{linked}}$$

by considering the *connected* parts of both sides

FOR CLOSED SHELL SYSTEMS

 $[S, H_0] = (QV\Omega)_{\text{,conn}}$

separated into one-, two-, ... body equations

$$[S_n, H_0] = (QV\Omega)_{n,\text{conn}}$$

$$\Omega = \{ \exp(S) \}$$

$$|\Psi_0
angle={
m e}^T|\Phi
angle$$

$$\langle \Phi^{a_1}_{i_1} | ar{H}^{(ext{CCSD})} | \Phi
angle = 0,$$

where

$$\langle \Phi_{i_1 i_2}^{a_1 a_2} | \bar{H}^{(\text{CCSD})} | \Phi \rangle = 0, \ i_1 < i_2, \ a_1 < a_2$$

 $\bar{H}^{(\text{CCSD})} = e^{-(T_1 + T_2)} H e^{T_1 + T_2} = (H e^{T_1 + T_2})_C$

 $E_{CC} = \langle \Phi_0 | \overline{H} | \Phi_0 \rangle$

$$|\mathbf{1}_{0}\rangle - \mathbf{c} |\Psi\rangle$$

 $T^{(\text{CCSD})} = T_1 + T_2$

 $T_1 = \sum_{i,a} t_i^a \{a^{\dagger}i\} = \checkmark^a$

 $T_2 = \sum_{i>j,a>b} t_{ij}^{ab} \{a^{\dagger}ib^{\dagger}j\} = \underbrace{i \quad a \ j \quad b}_{ij}$

The Coupled-Cluster Equations

$$|\Psi_{0}\rangle = e^{T}|\Phi\rangle \qquad \langle \Phi_{i_{1}}^{a_{1}}|\bar{H}^{(\text{CCSD})}|\Phi\rangle = 0,$$

$$T^{(\text{CCSD})} = T_{1} + T_{2} \qquad \langle \Phi_{i_{1}i_{2}}^{a_{1}a_{2}}|\bar{H}^{(\text{CCSD})}|\Phi\rangle = 0, \quad i_{1} < i_{2}, \quad a_{1} < a_{2} + i_{1}a_{2} + i_{2}a_{2} + i_{2}a_{$$

Moving from the Hilbert Space into the Fock Space

Coupled Cluster based methods for open-shell electronic states

- Fock-Space Coupled Cluster
- Equation-of-Motion Coupled Cluster
- Similarity-Transformed Equation-of-Motion Coupled Cluster

Multireference approach

$$H \left| \Psi_{j} \right\rangle = E_{j} \left| \Psi_{j} \right\rangle$$

 $|\Psi_j\rangle$ – many body wave function.

Multireference approach

$$H \left| \Psi_{j} \right\rangle = E_{j} \left| \Psi_{j} \right\rangle$$

 $|\Psi_{j}
angle$ – many body wave function.

Partitioning of the Hamiltonian

$$H = H_0 + V$$

V – perturbation H_0 – SCF like HF, DF or DFB Multireference approach

$$H \left| \Psi_{j} \right\rangle = E_{j} \left| \Psi_{j} \right\rangle$$

 $|\Psi_j
angle$ – many body wave function.

Partitioning of the Hamiltonian

$$H = H_0 + V$$

V – perturbation H_0 – SCF like HF, DF or DFB

 H_0 satisfying the eigenvalue equation:

$$\begin{split} H_0 \Big| \Phi_i \Big\rangle = E_0^i \Big| \Phi_i \Big\rangle \\ & \text{Where} \qquad \Phi_i = A \Big| \alpha \beta \gamma \delta ... v u \Big\rangle \quad \text{is an anti-symmetric} \\ & \text{Slater determinant, constructed of DF orbitals.} \end{split}$$

The determinant space

The Φ'_{i} 's span the determinant or function space, which is used to expand the real eigenstates $|\Psi_{j}\rangle$

The determinant space is partitioned into a model sub-space (*P*-space) and a complementary sub-space (*Q*-space).

The Model space

The model space is characterized by a projection operator:

$$P = \sum_{i \in P} \left| \Phi_i \right\rangle \left\langle \Phi_i \right|$$

Projection only to functions that are confined to the model space.

The Model space

The model space is characterized by a projection operator:

$$P = \sum_{i \in P} \left| \Phi_i \right\rangle \left\langle \Phi_i \right|$$

Projection only to functions that are confined to the model space.

P-space functions strongly interact among themselves. By including them all in *P*, we take into account the functions complete contributions to the state of interest: *Non-dynamic correlation.*

Illustration, the ground configuration $1s^22s^22p^2$ of the neutral carbon atom.

Basis Set Exchange Download GitHub Feedback About Help-

Request a Basis set

All roles	• All •	Total found: 44	Total found: 447 basis sets Select All Rese												Reset Se	election		
2ZaPa-NR 2ZaPa-NR-CV		1 H																² He
3-21G 3ZaPa-NR		Li Be	4										5 B	С	7 N	8 0	9 F	Ne 10
3ZaPa-NR-CV 4-31G		Na ¹¹ Mg	12										Al	14 Si	15 P	16 S	17 Cl	Ar 18
4ZaPa-NR 4ZaPa-NR-CV		K Ca	20 21 Sc	Ti 22	23 V	Cr ²⁴	Mn ²⁵	Fe ²⁶	C0 27	28 Ni	29 Cu	Zn ³⁰	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5ZaPa-NR 5ZaPa-NR-CV		Rb ³⁷ Sr	38 39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	Rh 45	Pd 46	47 Ag	48 Cd	49 In	50 Sn	51 Sb	Te ⁵²	53 I	54 Xe
6-21G	6-21G		56	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	At 85	86 Rn
6-31++G*		Fr Ra	38	Rf	105 Db	106 Sg	Bh	108 Hs	109 Mt	110 Ds	Rg ^{III}	Cn ¹¹²	113 Nh	114 Fl	115 Mc	Lv	117 Ts	Og
6-31++G**-J 6-31+G				57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
6-31+G* 6-31+G*-J				89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	Am ⁹⁵	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

As we have mentioned, we need a new classification of the single-particle states (orbitals) for open-shell systems. As an illustration we consider the ground configuration $1s^22s^22p^2$ of the neutral carbon atom. This configuration contains $\binom{6}{2} = 15$ determinants, some of which are indicated in Table 13.1.

1 <i>s</i> 0+	1 <i>s</i> 0-	2 <i>s</i> 0+	2 <i>s</i> 0 ⁻	2 <i>p</i> 1 ⁺	2 <i>p</i> 0+	2 <i>p</i> -1 ⁺	2 <i>p</i> 1 ⁻	2 <i>p</i> 0 ⁻	2 <i>p</i> -1 ⁻	3s0+	3 <i>s</i> 0-	4s0+ ···
×	×	×	×	×	×							
×	×	×	×	×		×						
×	X	×	×	×			×					
×	X	×	×	×				×				
×	X	×	×	×					×			
×	×	×	×		×	×						
×	×	×	×		×		×					
		—		-	_							
Core occu deter	e states pied ir minan	s, n all nts of th	ne			valence st occupied i letermina		Virtual states, unoccupied in all determinants of the model space				

Table 13.1. Determinants in the ground configuration of the carbon atom

The complementary space The rest of the $\{\Phi_i\}_{i \to Q}$ are confined to the orthogonal *Q*-space. *Q*-states weakly interact with model space functions.

Contributions from *Q*-space are known as:

Dynamic correlation.

The complementary space The rest of the $\{\Phi_i\}_{i \to Q}$ are confined to the orthogonal *Q*-space. *Q*-states weakly interact with model space functions.

Contributions from *Q*-space are known as:

Dynamic correlation.

Q-space contributions are approximated, depending on the truncation of the scheme.

The function space

The whole function space is the sum: P + Q = 1.

The main idea in multireference scheme:

Resulting "dressed" effective Hamiltonian diagonalized in *P*, eigenvalues approximate those of physical Hamiltonian.

$$H = \begin{pmatrix} PHP & PHQ \\ \\ QHP & QHQ \end{pmatrix}; H_{\text{eff}} = (PH_{\text{eff}}P)$$

Matrix elements of the effective *H* are more complicated than for *H*, include effects of Q space.

Coupled Cluster (CC)

In multireference, open shell we have the Zero-order wave function (ZOWF) $\left|\Psi_{0}^{j}\right\rangle = \sum_{i \in P} c_{i} \Phi_{i} = P \left|\Psi_{j}\right\rangle$.

Coupled Cluster (CC)

In multireference, open shell we have the Zero-order wave function (ZOWF) $\left|\Psi_{0}^{j}\right\rangle = \sum_{i \in P} c_{i} \Phi_{i} = P \left|\Psi_{j}\right\rangle$.

We assume there is some operator that transforms the ZOWF to the Schrödinger or Dirac eigenstate.

$$|\Psi_j\rangle = \Omega |\Psi_0^j\rangle$$
 Ω - the

2– the wave operator

Coupled Cluster (CC)

In multireference, open shell we have the Zero-order wave function (ZOWF) $\left|\Psi_{0}^{j}\right\rangle = \sum_{i \in P} c_{i} \Phi_{i} = P \left|\Psi_{j}\right\rangle$.

We assume there is some operator that transforms the ZOWF to the Schrödinger or Dirac eigenstate.

$$\left|\Psi_{j}\right\rangle = \Omega \left|\Psi_{0}^{j}\right\rangle \quad \Omega - \text{ the wave operator}$$

The exponential anzsats

$$\Omega = \exp(S) = 1 + S + \frac{1}{2}S^2 + \dots \quad S - \text{the cluster operator}$$

The exponential form of the CC wave function guarantees*:

- •size extensivity
- •separability condition

*Lindgren I. and Mukherjee D. Phys. Rep. 125, 207 (1987)

• Hermitian CC: Lindgren, J. Phys. B: At. Mol. Opt. Phys. 24 1143 (1991)

A multireference approach for open shells.

We assume or postulate a Universal wave operator (Ω), the method is also known as '*Valence Universal'*.

A multireference approach for open shells.

We assume or postulate a Universal wave operator (Ω), the method is also known as '*Valence Universal'*.

For the n-valence Hilbert-space problem we are considering also all the lower m-valence Hilbert spaces, with $0 \le m \le n$, it becomes a Fock space.

Our Fock space, F, will than be composed of several Hilbert spaces, H.

$$\mathbf{F} = \sum_{m=0}^{n} \mathbf{H}^{(m)} \ .$$

The FS scheme:

The FS scheme:

• Start from a reference, closed shell, and correlate it.

The FS scheme:

- Start from a reference, closed shell, and correlate it.
- Add and/or remove electrons one at a time, re-correlate the whole system at each stage.

The FS scheme:

- Start from a reference, closed shell, and correlate it.
- Add and/or remove electrons one at a time, re-correlate the whole system at each stage.
- Each stage is referred to a FS sector.

The FS scheme:

- Start from a reference, closed shell, and correlate it.
- Add and/or remove electrons one at a time, re-correlate the whole system at each stage.
- Each stage is referred to a FS sector.

The cluster operator is partitioned into sectors

$$S = \sum_{m \ge 0} \sum_{n \ge 0} \left(S^{(m,n)} \right).$$

(m,n) denotes sector with *m*-electrons removed (valence holes) and *n*-electrons added (valence particles) with respect to a reference DF function.

The subsystem embedding condition (SEC)

The equation for $S^{(i,j)}$ involves only $S^{(k,l)}$ terms with $k \le i$ and $l \le j$; only the $S^{(i,j)}$ are unknown.

The subsystem embedding condition (SEC)

The equation for $S^{(i,j)}$ involves only $S^{(k,l)}$ terms with $k \le i$ and $l \le j$; only the $S^{(i,j)}$ are unknown.

Therefore, the very large system of nonlinear-coupled equations separates into subsystems, which may be solved hierarchically.

Mukherjee, Proc. Indian Acad. Sci. (Chem. Sci.), 96, 145 (1986)

The FSCC working equations

$$Q[S^{(m,n)},H_0]P = Q(\overline{V\Omega} - \overline{\Omega V\Omega})^{(m,n)}P,$$

For the effective Hamiltonian we have

$$H_{eff}^{(m,n)} = P\overline{H\Omega}^{(m,n)}P$$

Note: These sector separations involve no approximation, but reduce computational effort significantly.

Kaldor, Theoretica chimica acta 80, 427-439 (1991)

- Iterate the $S^{(0,0)}$ equation to convergence.
- Solve for $S^{(0,1)}$ and/or $S^{(1,0)}$.
- Continue as needed.

- Iterate the $S^{(0,0)}$ equation to convergence.
- Solve for $S^{(0,1)}$ and/or $S^{(1,0)}$.
- Continue as needed.

Example of FSCC scheme for Mg;

Mg – configuration : $1s^22s^22p^63s^2 = [Ne]3s^2$;

- Iterate the $S^{(0,0)}$ equation to convergence.
- Solve for $S^{(0,1)}$ and/or $S^{(1,0)}$.
- Continue as needed.

Example of FSCC scheme for Mg;

Mg – configuration : $1s^22s^22p^63s^2$ =[Ne] $3s^2$; Mg⁺⁺, DF+CC (0,0) sector;

- Iterate the $S^{(0,0)}$ equation to convergence.
- Solve for $S^{(0,1)}$ and/or $S^{(1,0)}$.
- Continue as needed.

Example of FSCC scheme for Mg;

Mg – configuration : $1s^22s^22p^63s^2 = [Ne]3s^2$;

Mg⁺⁺, DF+CC (0,0) sector;

$$\rightarrow$$
 Mg⁺, CC (0,1) sector;

- Iterate the $S^{(0,0)}$ equation to convergence.
- Solve for $S^{(0,1)}$ and/or $S^{(1,0)}$.
- Continue as needed.

Example of FSCC scheme for Mg;

Mg – configuration : $1s^22s^22p^63s^2 = [Ne]3s^2$;

Mg⁺⁺, DF+CC (0,0) sector;

- \rightarrow Mg⁺, CC (0,1) sector;
- \rightarrow Mg, CC (0,2) sector.

Features of the FSCC method:

- Diagonalization of the effective Hamiltonian directly gives energies with respect to closed-shell reference. Energies may be ionization potentials, excitation energies, or electron affinities.
- All transition energies calculated simultaneously (all or nothing).
- Symmetry adaptation (LS or J) is automatic.

$$H_{eff}^{(m,n)} = P \overline{H} \Omega^{(m,n)} P$$

Equation-of-motion

coupled-cluster (EOM-CC)

In the EOM-CC method the wave function for the kth excited state is given by

 $|\Psi_k\rangle = R|\Psi_g\rangle,\tag{4}$

The ground state wave function within the coupledcluster formalism is expressed as

$$\Psi_g = e^T |\Phi_o\rangle,\tag{1}$$

"Multireference **Fock-space** coupled-cluster and **equation-of-motion** coupled-cluster theories: The detailed **interconnections**." Musial and Bartlett, *J. Chem. Phys.*, **129**, 134105 (2008)

Kucharski et. al. J. Chem. Phys., 115 8263 (2001)
coupled-cluster (EOM-CC)

In the EOM-CC method the wave function for the *k*th excited state is given by $|\Psi_k\rangle = R |\Psi_g\rangle$, (4) and *R* is a linear (CI-like) excitation operator, defined as $R = R_0 R_1 + R_2 + R_3$, (5)

coupled-cluster (EOM-CC)

In the EOM-CC method the wave function for the *k*th excited state is given by $|\Psi_k\rangle = R |\Psi_g\rangle$, (4) and *R* is a linear (CI-like) excitation operator, defined as $R = R_0 R_1 + R_2 + R_3$, (5) with R_n defined analogously as T_n , i.e., R_n

coupled-cluster (EOM-CC)

In the EOM-CC method the wave function for the kth excited state is given by $|\Psi_k\rangle = R |\Psi_g\rangle,$ (4)and R is a linear (CI-like) excitation operator, defined as + $R = R_0 R_1 + R_2 + R_3$, (5) R_n defined analogously as T_n , i.e., R_n with $=(n!)^{-2} \sum r_{ii}^{ab...} \{a^{\dagger}b^{\dagger}...ji\}.$ Inserting the $|\Psi_k\rangle$ wave function, Eq. (4), into the Schrödinger equation we obtain

coupled-cluster (EOM-CC)

coupled-cluster (EOM-CC)

In the EOM-CC method the wave function for the kth excited state is given by $|\Psi_k\rangle = R|\Psi_g\rangle,$ (4) $\Psi_g = e^T |\Phi_o\rangle,$ (1) $HRe^{T}|\Phi_{a}\rangle = ERe^{T}|\Phi_{a}\rangle,$ (6)or, since the R and T operators commute, a_1 $\overline{H}R|\Phi_o\rangle = ER|\Phi_o\rangle, \qquad \overline{H} = e^{-T}He^T = (He^T)_C$ (7)

Equation-of-motion coupled-cluster (EOM-CC)

$$|\Psi_{EOM}\rangle = Re^T |\Phi_0\rangle$$

$$\overline{H}R_k|\Phi_0\rangle = E_k R_k|\Phi_0\rangle$$

 $\overline{\mathbf{H}}\mathbf{R}_{\mathbf{k}}=\mathbf{E}_{\mathbf{k}}\mathbf{R}_{\mathbf{k}}$

$$\overline{\boldsymbol{H}} = e^{-T} H e^{T} = \frac{|\Phi_{0}\rangle \quad \{|\Phi_{I}\rangle\}}{\langle \Phi_{0}| \begin{pmatrix} E_{CC} & \langle \Phi_{0}|\overline{H}|\Phi_{I}\rangle \\ \\ \{\langle \Phi_{J}|\} \begin{pmatrix} 0 & \langle \Phi_{J}|\overline{H}|\Phi_{I}\rangle \end{pmatrix}$$

Truncated Configuration Interaction

$$egin{aligned} |\Psi
angle &= |\Phi_0
angle + \sum_{ia} c^a_i |\Phi^a_i
angle + \sum_{ijab} c^{ab}_{ij} |\Phi^{ab}_{ij}
angle \ &= \sum_I^{all} C_I |\Phi_0
angle = \sum_I^{all} c_I |\Phi_I
angle \ &C_I = C_0 + C_1 + C_2 + C_3 \cdots \end{aligned}$$

Configuration Interaction (CI) $HC_k |\Phi_0\rangle = E_k C_k |\Phi_0\rangle$ $HC_k = E_kC_k$ $\{ |\Phi_I \rangle \}$ $|\Phi_0\rangle$ $egin{aligned} egin{aligned} egin{aligne} egin{aligned} egin{aligned} egin{aligned} egin$ EOM-CC $|\Phi_0\rangle$ $\{ |\Phi_I \rangle \}$ $\overline{H} = e^{-T}He^{T} =$ $\langle \Phi_0 |$ $\{\langle \Phi_J |\}$

Equation-of-motion coupled-cluster (EOM-CC)

Within EOMCC we calculate the CC ground state, and (unlike in FSCC) move directly into the EE space.

$$\overline{\mathbf{H}}\mathbf{R}_{\mathbf{k}} = \mathbf{E}_{\mathbf{k}}\mathbf{R}_{\mathbf{k}}$$

EOM-EE
$$\Psi(M_s = 0) = R(M_s = 0)\Psi_0(M_s = 0)$$

The ground state represent the FS (0,0) sector and EE is the (1,1) sector, within FSCC we also consider the (1,0) and (0,1) sector before the (1,1).

EOM-SF
$$\Psi(M_s = 0) = R(M_s = -1)\Psi_0(M_s = 1)$$

r, $\frac{1}{1-}$ $\frac{1}{1+}$ $\frac{1}{1+}$ $\frac{1}{1-}$ $\frac{1}{1+}$ $\frac{1$

EOM-CC Methods for Open-Shell and Electronically Excited Species: The Hitchhiker's Guide to Fock Space Anna I. Krylov Annual Review of Physical Chemistry **59** 433-462 (2008)

$$\overline{\mathbf{H}}\mathbf{R}_{\mathbf{k}} = \mathbf{E}_{\mathbf{k}}\mathbf{R}_{\mathbf{k}}$$

coupled-cluster (EOM-CC)

Equation-of-motion

EOM-EA $\Psi(N) = R(+1)\Psi_0(N-1)$

Anna I. Krylov Annual Review of Physical Chemistry 59 433-462 (2008)

ST-EOM-CC

In STEOM-CCSD the Hamiltonian expressed in the language of second quantization is transformed twice to yield

$$\hat{G} = \{e^{\hat{S}}\}^{-1} e^{-\hat{T}} \hat{H} e^{\hat{T}} \{e^{\hat{S}}\}$$

Nooijen and Bartlett, J. Chem. Phys. 106 6441 (1997)

• Transformed Hamiltonian

$$\hat{\bar{H}} = e^{-\hat{T}}\hat{H}e^{\hat{T}} = \bar{h}_0 + \sum_{p,q} \bar{h}_{p;q} \{\hat{p}^{\dagger}\hat{q}\} + \frac{1}{4} \sum_{p,q,r,s} \bar{h}_{pq;rs} \{\hat{p}^{\dagger}\hat{r}\hat{q}^{\dagger}\hat{s}\} + \cdots$$

• CC equations:

$$\begin{split} &\overline{h}_{ai} = \langle \Phi_i^a | \hat{\bar{H}} | \Phi_0 \rangle = \langle \Phi_i^a | e^{-\hat{T}} \hat{H} e^{\hat{T}} | \Phi_0 \rangle = 0, \\ &\overline{h}_{abij} = \langle \Phi_{ij}^{ab} | \hat{\bar{H}} | \Phi_0 \rangle = \langle \Phi_{ij}^{ab} | e^{-\hat{T}} \hat{H} e^{\hat{T}} | \Phi_0 \rangle = 0. \end{split}$$

Nooijen and Bartlett, J. Chem. Phys. 106 6441 (1997)

The coupled-cluster operators

• where *T* is:

$$\begin{split} \hat{T} &= \hat{T}_{1} + \hat{T}_{2} = \sum_{i,a} t_{i}^{a} \{ \hat{a}^{\dagger} \hat{\imath} \} + \frac{1}{4} \sum_{i,a} t_{ij}^{ab} \{ \hat{a}^{\dagger} \hat{\imath} \hat{b}^{\dagger} \hat{\jmath} \} & \begin{array}{c} \text{Occ: } i, j \dots \\ \text{active:} m, n \dots \\ \text{active:} m, n \dots \\ \text{Virts: } a, b \dots \\ \text{active:} e, f \dots \\ \text{IP:} \quad \hat{S}^{-} = \hat{S}_{1}^{-} + \hat{S}_{2}^{-} = \sum_{i',m} s_{i'}^{a'} \{ \hat{m}^{\dagger} \hat{\imath}' \} + \frac{1}{2} \sum_{i,j,a,m} s_{ij}^{ab} \{ \hat{a}^{\dagger} \hat{\imath} \hat{m}^{\dagger} \hat{\jmath} \} \end{split}$$

Nooijen and Bartlett, J. Chem. Phys. 106 6441 (1997)

\hat{H}	$ arPsi_0 angle$	$ \Phi^a_i angle$	$ \Phi^{ab}_{ij} angle$	$ \Phi^{abc}_{ijk} angle$	$\mid \Phi^{abcd}_{ijkl} angle$
$\langle arPhi_0 $	h_0	X	X	0	0
$\langle \Phi^a_i $	$f^a_i\{\hat{a}^\dagger\hat{i}\}$	X	Χ	X	0
$\langle \Phi^{ab}_{ij} $	$V^{ab}_{ij}\{\hat{a}^{\dagger}\hat{i}\hat{b}^{\dagger}\hat{j}\}$	$f_i^a \{ \hat{a}^\dagger \hat{i} \}, \ V_{ij}^{kb} \{ \hat{k}^\dagger \hat{i} \hat{b}^\dagger \hat{j} \}, \ V_{cj}^{ab} \{ \hat{a}^\dagger \hat{c} \hat{b}^\dagger \hat{j} \}$	Χ	Χ	X
$\langle \Phi^{abc}_{ijk} $	0	$V^{ab}_{ij}\{\hat{a}^{\dagger}\hat{i}\hat{b}^{\dagger}\hat{j}\}$	X	X	X
$\langle \Phi^{abcd}_{ijkl} $	0	0	X	X	X

EOMCCSD

CI

$\hat{ar{H}}$	$ arPsi_0 angle$	$ \Phi^{a}_{i} angle$	$ \Phi^{ab}_{ij} angle$	$ \Phi^{abc}_{ijk} angle$	$ \Phi^{abcd}_{ijkl} angle$
$\langle \Phi_0 $	\bar{h}_0	Ā	Ā	0	0
$\langle \Phi^a_i $	$\bar{h}_i^a \equiv 0$	$ar{\mathbf{X}}$	$ar{\mathbf{X}}$	Ī	0
$\langle \Phi^{ab}_{ij} $	$\bar{h}_{ij}^{ab} \equiv 0$	$\bar{h}_{i}^{a} \equiv 0, \ \bar{h}_{ij}^{kb} \{ \hat{k}^{\dagger} \hat{i} \hat{b}^{\dagger} \hat{j} \}, \ \bar{h}_{cj}^{ab} \{ \hat{a}^{\dagger} \hat{c} \hat{b}^{\dagger} \hat{j} \}, \ \boldsymbol{\sim}$	Ā	Ā	Ā
$\langle \Phi^{abc}_{ijk} $	~	$ar{h}^{ab}_{ij}\equiv 0,~m{\sim}$	Ā	$\bar{\mathbf{X}}$	Ā
$\langle \Phi^{abcd}_{ijkl} $	~	~	~	$\bar{\mathbf{X}}$	Ā

	\hat{G}	$ arPsi_0 angle$	$ \Phi^{a}_{i} angle$	$ \Phi^{ab}_{ij}\rangle$	$ \Phi^{abc}_{ijk} angle$	$ \Phi^{abcd}_{ijkl}\rangle$
	$\langle arPhi_0 $	$g_0 = \bar{h}_0$	$\overline{ar{\mathbf{X}}}$	$\bar{\bar{\mathbf{X}}}$	0	0
CCSD	$\langle \Phi^a_i $	$g_i^a \equiv 0$	Ā	$\bar{\bar{\mathbf{X}}}$	$\bar{f X}$	0
	$\langle \Phi^{ab}_{ij} $	${\sf g}^{ab}_{ij}\equiv 0$	$\mathbf{g}_{i}^{a}\equiv0,\ \mathbf{g}_{ij}^{mb}\equiv0,\ \mathbf{g}_{ej}^{ab}\equiv0,\ \boldsymbol{\eqsim}$	$\bar{\bar{\mathbf{X}}}$	$\bar{ar{\mathbf{X}}}$	$\bar{\bar{X}}$
	$\langle \Phi^{abc}_{ijk} $	≂	$g_{ij}^{ab}\equiv 0,\ oldsymbol{a}$	≂	$\bar{\bar{\mathbf{X}}}$	$\bar{ar{\mathbf{X}}}$
	$\langle \Phi^{abcd}_{ijkl} $	≂	≂	≂	≂	$\bar{ar{\mathbf{X}}}$
EOMCCSD	$\hat{ar{H}}$	$ \Phi_0 angle$	$ oldsymbol{\Phi}^{\mathbf{a}}_{\mathbf{i}} angle$	$ \Phi^{ab}_{ij} angle$	$ \Phi^{abc}_{ijk} angle$	$ \Phi^{abcd}_{ijkl} angle$
EOMCCSD	$rac{\hat{ar{H}}}{\langle arPhi_0 }$	$ arPsi_0 angle \ ar{h}_0$	$ \Phi^a_i angle \ ar{X}$	$ \Phi^{ab}_{ij} angle \ ar{X}$	$ \Phi^{abc}_{ijk} angle$ 0	$\frac{ \Phi^{abcd}_{ijkl}\rangle}{0}$
EOMCCSD	$egin{array}{c} \hat{ar{H}} \ & & \ \hline \langle m{\Phi}_0 \ & & \ \langle m{\Phi}^{m{a}}_{m{i}} \end{array}$	$ \Phi_0\rangle$ \bar{h}_0 $\bar{h}_i^a \equiv 0$	$\begin{array}{c} \Phi_i^a\rangle \\ \\ \bar{X} \\ \bar{X} \\ \bar{X} \end{array}$	$\begin{array}{c} \Phi^{ab}_{ij}\rangle \\ \bar{X} \\ \bar{X} \\ \bar{X} \end{array}$	$ \Phi^{abc}_{ijk} angle$ 0 $ar{X}$	$ \Phi^{abcd}_{ijkl} angle$ 0 0
EOMCCSD	$egin{array}{c} \hat{ar{H}} \ & \ & \ & \ & \ & \ & \ & \ & \ & \$	$\begin{split} \Phi_0 \rangle \\ \\ \bar{h}_0 \\ \bar{h}_i^a \equiv 0 \\ \\ \bar{h}_{ij}^{ab} \equiv 0 \end{split}$	$\begin{split} \boldsymbol{\Phi_{i}^{a}} \rangle \\ & \bar{\mathbf{X}} \\ & \bar{\mathbf{X}} \\ \bar{h}_{i}^{a} \equiv 0, \ \bar{h}_{ij}^{kb} \{ \hat{k}^{\dagger} \hat{i} \hat{b}^{\dagger} \hat{j} \}, \ \bar{h}_{cj}^{ab} \{ \hat{a}^{\dagger} \hat{c} \hat{b}^{\dagger} \hat{j} \}, \ \boldsymbol{\sim} \end{split}$	$ \Phi^{ab}_{ij} angle$ $ar{X}$ $ar{X}$ $ar{X}$ $ar{X}$	$ \Phi^{abc}_{ijk} angle$ 0 $ar{X}$ $ar{X}$	$\frac{ \Phi^{abcd}_{ijkl}\rangle}{0}\\\bar{X}$
EOMCCSD	$egin{array}{c} \hat{ar{H}} & & \ \hline \langle arPhi_0 & & \ \langle oldsymbol{\Phi}_{\mathbf{i}}^{\mathbf{a}} & & \ \langle oldsymbol{\Phi}_{\mathbf{ij}}^{\mathbf{ab}} & & \ \hline \langle oldsymbol{\Phi}_{\mathbf{ijk}}^{\mathbf{abc}} & & \ \hline \langle oldsymbol{\Phi}_{\mathbf{ijk}}^{\mathbf{abc}} & & \ \end{array}$	$ \Phi_{0}\rangle$ \bar{h}_{0} $\bar{h}_{i}^{a} \equiv 0$ $\bar{h}_{ij}^{ab} \equiv 0$ \sim	$\begin{split} \boldsymbol{\Phi_{i}^{a}} \rangle \\ & \bar{\mathbf{X}} \\ \bar{\mathbf{X}} \\ \bar{h}_{i}^{a} \equiv 0, \ \bar{h}_{ij}^{kb} \{ \hat{k}^{\dagger} \hat{i} \hat{b}^{\dagger} \hat{j} \}, \ \bar{h}_{cj}^{ab} \{ \hat{a}^{\dagger} \hat{c} \hat{b}^{\dagger} \hat{j} \}, \ \boldsymbol{\sim} \\ & \bar{h}_{ij}^{ab} \equiv 0, \ \boldsymbol{\sim} \end{split}$	$\frac{ \Phi^{ab}_{ij}\rangle}{\bar{X}}$ \bar{X} \bar{X} \bar{X}	$ \begin{array}{c c} \Phi^{abc}_{ijk} \rangle \\ \hline 0 \\ \bar{X} \\ \bar{X} \\ \bar{X} \\ \bar{X} \\ \bar{X} \\ \bar{X} \\ \hline \end{array} $	$ \Phi^{abcd}_{ijkl} angle$ $egin{array}{c} 0 \ 0 \ ar{X} \ ar{X} \ ar{X} \end{array}$

Davidsons Diagonalization $\overline{H}\mathbf{R}_{\mathbf{k}} = \mathbf{E}_{\mathbf{k}}\mathbf{R}_{\mathbf{k}}$

• A generalized Davidson iterative diagonalization procedure, which requires calculation of the **products of the transformed Hamiltonian acting on trial vectors**

for EOMCC
$$\sigma = \overline{H}R$$
 or for ST-EOMCC $\sigma = G\widetilde{R}$

- The original (full) matrix is projected onto a search sub-space of an increasing dimension and diagonalized within this subspace, yielding approximate eigenpairs of the full matrix
- Davidson iterative diagonalization procedure for the Hermitian matrices is appropriately modified for the case of non-Hermitian matrices (Hirao and Nakatsuji 1982).

Zuev at al. J. of Comp. Chem. 36, 273 (2015)

Davidsons diagonalization requires the σ terms

(products of the transformed Hamiltonian with trial vectors).

FIG. 10. EOM-CCSD: the $\sigma = \overline{H}R$ singles (top) and doubles (bottom) terms. R_2 vector is represented by the two-electron oval interaction.

Landau J. Chem. Phys. 139, 014110 (2013)

$$FIG. 9. STEOM-CCSD: the $\sigma = G\tilde{R}$ terms.$$

FIG. 2. Definitions of the diagrammatic symbols; anti-symmetrized skeleton diagrams are used, where the direction of the arrows is omitted: (a) and (b) one- and two-body IP/EA FSCC operators: $S^1 = S^{IP} + S^{EA}$. (c) FSCC excitation operators: S^{EE} or $\mathbf{S}_{\mathbf{Q}}$. (d) Single-excitations: \tilde{R} . (e) The transformed-Hamiltonian interaction: \overline{H} . (f) The effective-Hamiltonian interaction: H_{eff} . (g) Restriction to active orbitals. (h) Orbitals can be active and inactive (unlike in S_1^1).

Davidsons diagonalization requires the σ terms

(products of the transformed Hamiltonian with trial vectors).

FIG. 8. The FS-CCSD σ terms obtained by the product of the transforme Hamiltonian [$\overline{\mathbf{H}}$, Figs. 6 and 7] with a single-excitation eigenvector $\widetilde{\mathbf{R}}$.

Landau J. Chem. Phys. 139, 014110 (2013)

FIG. 9. STEOM-CCSD: the $\sigma = G\widetilde{R}$ terms.

FIG. 2. Definitions of the diagrammatic symbols; anti-symmetrized skeleton diagrams are used, where the direction of the arrows is omitted: (a) and (b) one- and two-body IP/EA FSCC operators: $S^1 = S^{IP} + S^{EA}$. (c) FSCC excitation operators: S^{EE} or $\mathbf{S}_{\mathbf{Q}}$. (d) Single-excitations: \widetilde{R} . (e) The transformed-Hamiltonian interaction: \overline{H} . (f) The effective-Hamiltonian interaction: H_{eff} . (g) Restriction to active orbitals. (h) Orbitals can be active and inactive (unlike in S_1^1).

Coupled Cluster based methods for open-shell electronic states

- FSCC, ST-EOM-CC, EOM-CC and CI methods can be presented in a very similar way both conceptually and technically.
- The computational cost of the diagonalization step is approximately the same for the CI and EOM-CC models truncated at the same level of excitation.
- The computational cost of the diagonalization step is lower for FSCC and ST-EOM-CC, compared to EOM-CC and CI.
- The truncated EOM-CC model is superior to the CI truncated at the same level because effects of higher excitations are "folded in" through the similarity transformation into \overline{H} . The role of the similarity transformation is to achieve more compact representation of the right and left vectors R,L.
- Similarly, FSCC and ST-EOM-CC "fold" additional terms into the effective Hamiltonian relative to EOM-CC, however the procedure becomes somewhat combarsome.

EOM-CC and size intensive

Excitaton energy is size-intensive when only one subsystem is excited. It is additively separable into one open-shell fragment and one (or many) closed-shell fragments

> Mukerjee and co-authors *Theor. Chim. Acta.* **80**, 441 (1991) Nooijen, Shamasundar and Mukerjee *Molec. Phys.* **103**, 2277 (2005)

$$\begin{split} E &\rightarrow E_A + E_B \\ \{E\} &\rightarrow \{E_A + E_B \ , E_A + E_B^S \ , E_A^S + E_B \ , E_A^- + E_B^+ \ , E_A^+ + E_B^- \} \end{split}$$

 Missner and Bartlett J. Chem. Phys. **102**, 7490 (1995)

EOM-CC and size intensive

Excitaton energy is size-intensive when only one subsystem is excited. It is additively separable into one open-shell fragment and one (or many) closed-shell fragments

Mukerjee and co-authors Theor. Chim. Acta. 80, 441 (1991)

Nooijen, Shamasundar and Mukerjee Molec. Phys. 103, 2277 (2005)

This theoretical short-

coming is not as ominous as one might fear, however, since excitation energies obtained in monomer calculations persist in the supermolecule.

Stanton J. Chem. Phys. 101, 8928 (1994)

- Coupled-cluster (CC) based methods that work within Fock Space,
 - i.e., FSCC, EOMCC and STEOM-CC, are

robust, reliable and accurate tools for calculating transition energies,

Energies may

be ionization potentials, excitation energies, or electron affinities.

- All transition energies calculated simultaneously (all or nothing).
- Symmetry adaptation (*LS* or *J*) is automatic.

• Lets me say few words on my current research...

atomic/molecular spectum

atomic/molecular spectum

atomic/molecular spectum

Electronic and Nuclear resonances by ab-initio calculations

Resonances are *complex poles* **of Scattering matrix,** S(E)=Aout(E)/Ain(E).

 $E_{res} = Energy - \frac{i}{2}\Gamma$ (width = INVERSE LIFETIME) $S(E_{res}) = \infty$

Direct calculations of Resonances by solving the TISE equation

Non-Hermitian Quantum Mechanics

$$\widehat{H} \Psi_{res} = E_{res} \Psi_{res}$$

$$\begin{bmatrix} -2 \\ -3 \\ -4 \\ -4 \\ -5 \\ -6 \\ -7 \\ -8 \\ -0 \\ -7 \\ -8 \\ -0 \\ -7 \\ -8 \\ -100 \\ -80 \\ -60 \\ -40 \\ -20 \\ 0 \\ 20 \\ 40 \\ 60 \\ 80 \\ 100 \\ x[au]$$

$$U_{res}(r) \xrightarrow{out-going; Ain(E_{res})=0} e^{+iRe[k]r}e^{-Im[k]r} \xrightarrow{\frac{k}{2}=E_{res}} \infty$$

$$\Psi_{res}(F(r)) \xrightarrow{\mathbf{F}(r) \xrightarrow{\mathbf{r} \to \infty} re^{i\theta}}$$

ONLY NOW BASIS SET CAN BE USED

1.2

Introduction - Resonances via Padé - Methodology

		< □ >	< 🗗 >	<.≣>	◆≣→	E	9 Q P
Arik Landau	Resonances via Padé			January	/ 10, 201	9	4 / 61
Introduction – **Resonances via Padé** – Methodology

• We want to calculate electronic **complex** PES, which are required for **molecular dynamics** of **resonance states**.

Introduction - Resonances via Padé - Methodology

- We want to calculate electronic **complex** PES, which are required for **molecular dynamics** of **resonance states**.
- Resonances via **Padé** (RVP) yields resonance energies from **standard-quantum-chemistry** packages.

▲□▶▲□▶▲□▶▲□▶ □ のぐら

|--|

Arik

Introduction – Resonances via Padé – Methodology

- We want to calculate electronic **complex** PES, which are required for molecular dynamics of resonance states.
- Resonances via **Padé** (RVP) yields resonance energies from standard-quantum-chemistry packages.
- It is based on stabilization graphs.

4 / 61

Introduction – Resonances via Padé – Methodology

- We want to calculate electronic **complex** PES, which are required for **molecular dynamics** of **resonance states**.
- Resonances via **Padé** (RVP) yields resonance energies from **standard-quantum-chemistry** packages.
- It is based on **stabilization graphs**.

Arik Landau

• Move into the complex plane by analytical continuation (Padé).

- The eigenvalues are computed, while a set of basis functions (BFs) are scaled by a real factor α .
- Scaling the exponents of the selected BFs are divided by α .

< □ > < ⊡ >	▲ 콜 ▶ ▲ 콜 ▶	言 うくぐ
--------------------	---------------	-------

5 / 61

 The eigenvalues are computed, while a set of basis functions (BFs) are scaled by a real factor — α.

Resonances via Padé

200

5 / 61

January 10, 2019

- Scaling the exponents of the selected BFs are divided by α .
- The scaled BFs are the most diffuse functions.

- The eigenvalues are computed, while a set of basis functions (BFs) are scaled by a real factor — α.
- Scaling the exponents of the selected BFs are divided by α .
- The scaled BFs are the most diffuse functions.
- It is a series of calculations in which α is continually varied.

- The eigenvalues are computed, while a set of basis functions (BFs) are scaled by a real factor α .
- Scaling the exponents of the selected BFs are divided by α .
- The scaled BFs are the most diffuse functions.
- It is a series of calculations in which α is continually varied.
- For $\alpha < 1$ the spatial distribution of the basis set compresses...... while for $\alpha > 1$ it expands.

The Stabilizations Technique

Figure: Solutions to the time-independent Schrödinger equation for a simple analytically solvable one-dimensional repulsive potential

		< □ >	< ≣ > < ≣ > < ≣ > ≡	596
Arik Landau	Resonances via Padé		January 10, 2019	8 / 61
	0 05 -5 05			

First Derivative of the Eigenvalues w.r.t. Scaling Parameters — for the $He(2s^2)$ resonance — UCS/FCI/19<u>s15p10d8f</u>

First Derivative of the Eigenvalues w.r.t. Scaling Parameters — for the $He(2s^2)$ resonance — UCS/FCI/19<u>s15p10d8f</u>

Case Study – The Doubly Excited He* Atom

Multiple He* Feshbach Complex Energies

	Re <i>E</i> ,	mhartree	Im E,	mhartree
state	RVP	exact	RVP	exact
$l^1A_g^2$	-777.7858	-777.8676^{64}	-2.246	-2.271^{64}
$A_{g}B_{xu}$	-760.4625	-760.4906^{74}	-0.151	-0.1495^{74}
B _{xu} B _{xu}	-701.5648	-701.946^{72}	-1.244	-1.181^{72}
A _g B _{xu}	-692.8821	-693.1349^{73}	-0.698	-0.687^{73}
$2^1 A_g^2$	-621.1877	-621.9273^{64}	-0.120	-0.108^{64}
	-	_		

^{*a*}The doubly-excited states are presented using the D_{2h} point group (x

Complex energies of the doubly excited Feshbach He* RVP *vs.* Exact, in mhartree.

RVP is in good agreement with the exact values RVP yields reliable complex energy difference

Landau and Haritan J. Phys. Chem. A 2019, 123, 5091-5105

Doubly Excited He* - Transitions 2p² (¹S^e)

- Schematic energy levels.
- Three bound (bottom) and four resonance states (top).
- The red arrows represent allowed dipole transitions.
- We have calculated all *eight* complex transition dipoles.

Bhattacharya, Landau, and Moiseyev J. Phys. Chem. Lett. 11, 5601 (2020)

Doubly Excited He* - Transition Dipoles

Comparison of Complex Transition Dipoles in m.a.u."						
	CS\ExTG5G ^{3,27}		RVP\bas	sis I	RVP\bas	is II
transition	Reµ	Imµ	Reµ	Imµ	Reµ	Imµ
$1 \leftrightarrow 6$	35.4	+12.11	34.88	+12.44	35.99	+12.99
$2 \leftrightarrow 6$	313.0	-3.598	313.0	-3.021	313.1	-4.136
$3 \leftrightarrow 4$	-123.1	-2.554	-122.8	-2.403	-125.5	-2.367
$3 \leftrightarrow 5$	328.8	+0.193	326.8	+0.140	321.4	+0.119
$3 \leftrightarrow 7$	-192.5	+0.3475	-192.4	+0.3571	-192.4	+0.2619
$4 \leftrightarrow 6$	1522.7	-9.73	1528.9	-10.24	1529.3	-10.79
$5 \leftrightarrow 6$	1705.45	-3.767	1704.42	-4.030	1693.6	-4.499
$6 \leftrightarrow 7$	-2161.4	-1.007	-2163.4	-1.164	-2167.5	-2.570

^{*a*}ExTG5G is a highly optimized (complete) basis set and represents accurate CS/FCI values for comparison. Basis I and basis II are truncated ExTG5G bases. Basis I is larger than basis II, and they represent the current RVP calculations. The transition indexing is defined in Figure 1.

CS/FCI/ExTG5G :: Kaprálová-Žďánská, Šmydke, and Civiš JCP 139, 104314 (2013)

Bhattacharya, Landau, and Moiseyev J. Phys. Chem. Lett. 11, 5601 (2020)