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The Coupled-Cluster Equations

equation for the cluster operator S is obtained

from the linked- diagrain formula
by considering the connected parts of both sides

FOR CLOSED SHELL SYSTEMS
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The Coupled-Cluster Equations

Po) = e |®) (@ [H P 0) =
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The Coupled-Cluster Equations

Po) = e |®) (@ [H D) 0) =
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Moving from the Hilbert Space into the Fock Space

Coupled Cluster based methods for open-shell electronic states

* Fock-Space Coupled Cluster
* Equation-of-Motion Coupled Cluster

* Similarity-Transformed Equation-of-Motion Coupled Cluster
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Multireference approach

H -
J
“Pj> - many body wave function.

Partitioning of the Hamiltonian

H=H +/I.

V — perturbation 0
H, — SCF like HF, DF or DFB

H, satisfying the eigenvalue equation:

Hy @)= E|@,)

Where (I)i = A‘aﬁyﬁ...m> is an anti-symmetric
Slater determinant, constructed of DF orbitals.




The determinant space

The @’s span the determinant or function space,

l
which is used to expand the real eigenstates ‘111]>

The determinant space is partitioned into a model
sub-space (P-space) and a complementary sub-
space (QO-space).



The Model space

The model space is characterized by a projection operator:
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Projection only to functions that are confined to the model
space.




The Model space

The model space is characterized by a projection operator:
P= 2 <I)l.><(I)l.
=P

Projection only to functions that are confined to the model
space.

P-space functions strongly interact among themselves.
By including them all in P, we take into account the functions

complete contributions to the state of interest:

Non-dynamic correlation.



lllustration, the ground configuration 1s22s?2p? of the neutral carbon atom.
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As we have mentioned, we need a new classification of the single-particle states
(orbitals) for open-shell systems. As an illustration we consider the ground
configuration 1s*2s*2p? of the neutral carbon atom. This configuration contains
(5) = 15 determinants, some of which are indicated in Table 13.1.

Table 13.1. Determinants in the ground configuration of the carbon atom

1s0* 150~ 2s0* 250°| 2p1* 2p0* 2p—1* 2p1= 2p0~ 2p—17| 3s0* 350 4s0% ...

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X
Core states, Valence states, Virtual states,
occupied in all occupied in some unoccupied in all
determinants of the determinants of the determinants of the

model space model space model space



The complementary space
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The complementary space
The rest of the {(Df} 0 are confined to the orthogonal O-space.
|l'—2l-

O-states weakly interact with model space functions.

Contributions from Q-space are known as:

Dynamic correlation.

O-space contributions are approximated, depending on the

truncation of the scheme.

The function space
The whole function space is the sum: P + Q =1.



The main idea in multireference scheme:

Resulting “dressed" effective Hamiltonian diagonalized in P,
eigenvalues approximate those of physical Hamiltonian.

[ PHP PIHO \

=1 oyp 0HO [it — (PILyD)

\ /

Matrix elements of the effective H are more complicated than
for H, include effects of Q space.
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Coupled Cluster (CC)

In multireference, open shell we have the Zero-order wave
function (ZOWF) i
‘PO =3 C;‘(Df =P llfj>
iEP

We assume there is some operator that transforms the ZOWF
to the Schrodinger or Dirac eigenstate.

¥ \=Q ‘LIIJ Q- the wave operator
J 0
The exponential anzsats
(= exp(S) =]1+S+ l52 +.... S—the cluster operator

2

The exponential form of the CC wave function guarantees™:

esjze extensivity
eseparability condition

*Lindgren |. and Mukherjee D. Phys. Rep. 125, 207 (1987)
* Hermitian CC: Lindgren, J. Phys. B: At. Mol. Opt. Phys. 24 1143 (1991)
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Fock-Space Coupled-Cluster (FSCC)

A multireference approach for open shells.

We assume or postulate a Universal wave operator (Q2),
the method is also known as 'Valence Universal’.

For the n-valence Hilbert-space problem we are
considering also all the lower m-valence Hilbert spaces,

with 0<m<n, it becomes a Fock space.

Our Fock space, F, will than be composed of several
Hilbert spaces, H.

_ o pgm
F = H .
m2=0



Fock-Space Coupled-Cluster (FSCC)
The FS scheme:
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Fock-Space Coupled-Cluster (FSCC)
The FS scheme:
e Start from a reference, closed shell, and correlate it.

e Add and/or remove electrons one at a time, re-correlate
the whole system at each stage.

e Each stage is referred to a FS sector.

The cluster operator is partitioned into sectors

S= 3 S S(m’”)].

m=0n=0

(m,n) denotes sector with m-electrons removed (valence

holes) and n-electrons added (valence particles) with respect
to a reference DF function.



Fock-Space Coupled-Cluster (FSCC)

The subsystem embedding condition (SEC)

The equation for s(-/) involves only ¢(k.[) terms with k <i
and /=< j ; only the s(5/) are unknown.



Fock-Space Coupled-Cluster (FSCC)

The subsystem embedding condition (SEC)

The equation for s(:J/) involves only ¢(k!) terms with k <i
and /< j ; only the s(b/) are unknown.

Therefore, the very large system of nonlinear-coupled

equations separates into subsystems, which may be
solved hierarchically.

Mukherjee, Proc. Indian Acad. Sci. (Chem. Sci.), 96, 145 (1986)



The FSCC working equations

o[ g 1p - oG- qre)\mnp.

0

For the effective Hamiltonian we have

(m,n) _ e (m,n)
Heff PHQ P

Note: These sector separations involve no approximation,
but reduce computational effort significantly.

KKaldor, Theoretica chimica acta 80, 427-439 (1991)



Summary of the FSCC scheme:

e Iterate the s(0.0) equation to convergence.
e Solve for ¢(0:D) and/or §(10),

e Continue as needed.
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Summary of the FSCC scheme:
e Iterate the s(U:0) equation to convergence.
e Solve for §(0.1) and/or g(1,0),
e Continue as needed.

Example of FSCC scheme for Mg;
Mg - configuration : 1s525?2p%3s>=[Ne]3s?;
Mg*+, DF+CC (0,0) sector;

— Mg*, CC (0,1) sector;



Summary of the FSCC scheme:
e Iterate the s(U:0) equation to convergence.
e Solve for §(0.1) and/or g(1,0),
e Continue as needed.

Example of FSCC scheme for Mg;
Mg - configuration : 1s525?2p%3s>=[Ne]3s?;
Mg*+, DF+CC (0,0) sector;

—  Mg*, CC (0,1) sector;

— Mg, CC(0,2) sector.



Features of the FSCC method:

e Diagonalization of the effective Hamiltonian directly gives
energies with respect to closed-shell reference. Energies may
be ionization potentials, excitation energies, or electron
affinities.

e All transition energies calculated simultaneously (all or
nothing).

e Symmetry adaptation (LS or J) is automatic.

(m,n) _ = (m,n)
Hejf PHQ P



Equation-of-motion
coupled-cluster (EOM-CQC)

In the EOM-CC method the wave function for the kth
excited state is given by

V) =R|T,), (4)

The ground state wave function within the coupled-
cluster formalism is expressed as

v =e!|D), (1)

g

"Multireference Fock-space coupled-cluster and equation-of-motion
coupled-cluster theories: The detailed interconnections."
Musial and Bartlett, J. Chem. Phys., 129, 134105 (2008)

Kucharski et. al. J. Chem. Phys., 115 8263 (2001)



Equation-of-motion
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In the EOM-CC method the wave function for the kth
excited state is given by

|, )=R|¥,), (4)
and R is a linear (Cl-like) excitation operator, defined as

R=R§R1+R2+R3, (5)

Kucharski et. al. ]. Chem. Phys., 115 8263 (2001)



Equation-of-motion
coupled-cluster (EOM-CCQC)

In the EOM-CC method the wave function for the kth
excited state is given by

|q;k>=R|qu>*

with R, defined

Kucharski et. al. ]. Chem. Phys., 115 8263 (2001)

RzR(}*R] +R2+R3,

analogously

das

i

i

and R is a linear (Cl-like) excitation operator, defined as

4)
1 a
L4
(5)
i aj b



Equation-of-motion
coupled-cluster (EOM-CCQC)

In the EOM-CC method the wave function for the kth
excited state is given by

| ) =R|¥,), @)
and R is a linear (Cl-like) excitation operator, defined as 1\3/3.
i v
R=R0R1+R2+R3, (5) !
i aj b

with R, defined analogously as T,, 1ie., R, ‘
=(n!)"?'Zr‘j‘}b“‘{aTbT..._ji}. X

Inserting the |W,) wave function, Eq. (4), into the
Schrodinger equation we obtain

Kucharski et. al. ]. Chem. Phys., 115 8263 (2001)



Equation-of-motion
coupled-cluster (EOM-CCQC)

In the EOM-CC method the wave function for the kth
excited state is given by

| ) =R|¥,), (4)
W= |@,), (1)
e_T_> H RET‘(I}G>=ER€T‘(I)0>, (6)

Kucharski et. al. ]. Chem. Phys., 115 8263 (2001)



Equation-of-motion
coupled-cluster (EOM-CCQC)

In the EOM-CC method the wave function for the kth

excited state is given by

|¢k>=Riq;Lq>*
1;[)‘ F— ET\(I}G%

&

H Reﬂq}f}}:EReT‘q)ﬂ)*

or, since the R and T operators commute,

'H Rlil}()>=ER‘(I)(J>’

Kucharski et. al. ]. Chem. Phys., 115 8263 (2001)

7 aTpgal T
H=e¢ "He = (He )

(4)
(1)

(7)



Equation-of-motion
coupled-cluster (EOM-CCQC)

|\IJEOM> — R€T|(I)0>

H — e THe! =

HR, — E R,

[Po) P}

(Dg Eco (Po

{{®s1}\N O (D,

H|®p)
H|®;)



Truncated Configuration Interaction

W) = [Do) + Z ct|®F) + D) e

1jab
all all

— ZCI|(I)0> — Z CI|(I)I>

Cr=Co+C1+Cy+Cs---



Configuration Interaction (CI)
HCk — Eka
| Do) {1®r)}
H = (| [(Do|H|o) <<I>O|H<1>I>)

{®}N\(P,|H|Do) (P, H|P,)

Fcoo (@0|ﬁ|¢>1>
0 (Dy|H|Dr)




Equation-of-motion ﬁRk — E R,
coupled-cluster (EOM-CQC)

EOM-EE U (M, = 0) = R(M, = 0)U, (M, = 0)

Within EOMCC we calculate the CC - — 4 -
ground state, and (unlike in FSCC) - 4 I
move directly into the EE space. —_—

Wo(Ms = 0) P Pob

2

EOM-SF  U(M, =0) = R(Ms = —1)Uo(M, = 1)
The ground state represent the FS

(0,0) sector and EE is the (1,1) sector, B — T+
within FSCC we also consider the T fH_ — T _l’_J
(1,0) and (0,1) sector before the (1,1). Ty (M, = 1) Ha

(3

EOM-CC Methods for Open-Shell and Electronically Excited Species:
The Hitchhiker's Guide to Fock Space
Anna I. Krylov Annual Review of Physical Chemistry 59 433-462 (2008)



Equation-of-motion
coupled-cluster (EOM-CC)

EOM-EA U(N) = R(+1)Uy(N — 1)

HR, = ExRy

1

—_—

1 1
I I

—_—
.

— s s

| |
2 2

The EA/IP EOMCC schemes —_— .
[k <1~,-gb
are equivalent to the EOMIP  U(N) — BTN 1+ 1)
FSCC (1,0) and (0,1) sectors.
— — + + 4+
— — = - = —
+H o H A H +
h\f—/ -~
P, P

Anna I. Krylov Annual Review of Physical Chemistry 59 433-462 (2008)




ST-EOM-CC

In STEOM-CCSD the Hamiltonian expressed in the language

of second quantization 1s transformed twice to yield

—{e} —THe .§}

Nooijen and Bartlett, |. Chem. Phys. 106 6441 (1997)



EOM-CC

e Transformed Hamiltonian

.

H=e"THe" =hy+ Y h,,{p"d}

P-q

+_ Z hpqn lpth(j SI
j? (f.' 5
e CC equations:

hoi=(DY|H| Do) = (@] e~ THe | D) =0,

nh:] <q)ﬂbH|(D{> <(Dab|€_TH€T|q)[}> 0.



STEOM-CC

e Second similarity transformation

o~

SV —1fTfaS
r=1e")  Hie'}
|
4

e Equation for the § amplitudes

Z gpq:r_s- {p 'I"q K O SRR

P-q.r.s

— 5l 3 ng:q {ﬁ’q“ } s

P-4

OCE: 7 7.
gir={(D,/|G|D,,)=0, active:m, n...
. Virts: a, b...
Y B ,
8unij={ L ;| G|P,) =0, active:e, f...

gnr€=<(1)”’|é|(]§)f’>=03 gﬂf_zﬁabij:o
gOZhOZECC

_ bay N Fe\
gnbej_<(I)ja|(J‘(I)p>_0’ .
Nooijen and Bartlett, |. Chem. Phys. 106 6441 (1997)



The coupled-cluster operators

e where T is:

T=T,+T,=){a' 1y +->{a'ib'j} |Occ: ij..
i 4a active:m, n...

Virts: a, b...
e where S is: active:e, f...

Nooijen and Bartlett, |. Chem. Phys. 106 6441 (1997)



STEOM-CCSD ws, EOM-CCSD

EOM-CC scheme:

\ccsD ]—)[ 7 | >/ Diagonalization (SD) |-/ EEs|

ST-EOM-CC scheme:

IP/ICCSD

Diagonalization (S) || EEs|

EA/CCSD



STEOM-CCSD ws, EOM-CCSD

EOM-CC scheme:

‘ccsD ]—)[ 7 | >/ Diagonalization (SD) |-/ EEs|

ST-EOM-CC sch i
seneme: S Ipicesp

Diagonalization (S) EES
EA/CCSD ]_>[ ]

~ = ! 7

1

b § D T W & B T
0| X X X 0 Ol X X X 0
S0 X X X SIo X X X
D| 0 XX X DI o~ X X
T|~ ~ X XJ '{~ ~ ~ X,
EOM-CC: Stanton and Bartlett STEOM-CC: Nooijen and Bartlett
J Chem Phys 98, 7029(1993) J Chem Phys 107, 6812 (1997)




Cl

EOMCCSD

H |®o) @) [F) 185 1 18EY)
(Do ho X X 0 E 0
(D3| f;“{ajf} ) ) ) X ) - X X 0
(@1 | vittativtyy  fftatiy, vty vitatertsy X X1 X
(Db 0 vibiatib' j) X X i X

bed
(@3¢ 0 0 X X X

H |®o) |®F) [@3°) 1 [@I) | DERSY)
(o ho X X + 0 0
(@ | hY = X X . X 0
(@ | AP =0 k¢ =0, WPETBT Y, hebatebti, ~ X1 X X
(DK’ ~ =0, ~ X X X

bed W \
(P ~ ~ ~ X




ST-EOM-
CCSD

EOMCCSD

G o) |8 12 195 1R
(o] G X X 0 0
(@ gf =0 X E X X 0
(@1 | o9ff =0 gf=0,97'=0, g7 =0, = X X X
<¢§g°| = gfj’ == = X X

bed — — — v
H |®o) |®F) [@3°) 1 [@I) | DERSY)

(o ho X X + 0 0

(@ | h*=0 X X X 0
(@ | AP =0 k¢ =0, WPETBT Y, hebatebti, ~ X1 X X
(DK’ ~ =0, ~ X X X
(q)?'b(:dl ~ ~ ~ Y X




STEOM-CCSD vs. EOM-CCSD

EOM-CC scheme: T

'cCcsD ]—>[ A | >| Diagonalization (SD) || EEs|

ST-EOM-CC scheme:

[CCiSD o 7 a—>[ Dlagonalliatlon (S) |- EEs|
©




STEOM-CC )  vs. EOM-CC
W) =eT1e5} | D) W) =e'R| D)

In the exact case: {e'g}(:“|(bo> =R|D,)




Davidsons Diagonalization
ﬁRk — EkRk

* A generalized Davidson iterative diagonalization procedure, which requires calculation of
the products of the transformed Hamiltonian acting on trial vectors
for EOMCC |5— HR or for ST-EOMCC = GR

* The original (full) matrix is projected onto a search sub-space of an increasing dimension
and diagonalized within this subspace, yielding approximate eigenpairs of the full matrix

» Davidson iterative diagonalization procedure for the Hermitian matrices is appropriately
modified for the case of non-Hermitian matrices (Hirao and Nakatsuji 1982).

Zuev at al. J. of Comp. Chem. 36, 273 (2015)



Davidsons diagonalization requires the o terms

(products of the transformed Hamiltonian with trial vectors).

N\ \
DAV

FIG. 10. EOM-CCSD: the o= HR singles (top) and doubles (bottom)
terms. R vector is represented by the two-electron oval interaction.
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FIG. 9. STEOM-CCSD: the o= GR terms.

Landau J. Chem. Phys. 139, 014110 (2013)

FaVaWVWe O
\/ () @
)
(a) (b) (c) (d) ()

(h)

FIG. 2. Definitions of the diagrammatic symbols; anti-symmetrized skeleton
diagrams are used, where the direction of the arrows is omitted: (a) and (b)
one- and two-body IP/EA FSCC operators: S| = S + SEA_ (c) FSCC exci-
tation operators: S¥Z or Sq- (d) Single-excitations: R. (e) The transformed-
Hamiltonian interaction: H. (f) The effective-Hamiltonian interaction: Hg.

(g) Restriction to active orbitals. (h) Orbitals can be active and inactive (un-
like in S}).



Davidsons diagonalization requires the o terms

(products of the transformed Hamiltonian with trial vectors).

SAVAR
N Y

FIG. 8. The FS-CCSD ¢ terms obtained by the product of the transformed
Hamiltonian [H, Figs. 6 and 7] with a single-excitation eigenvector R.
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FIG. 9. STEOM-CCSD: the 6 = GR terms.

Landau |. Chem. Phys. 139, 014110 (2013)
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FIG. 2. Definitions of the diagrammatic symbols; anti-syrnrnetrized skeleton
diagrams are used, where the direction of the arrows is omitted: (a) and (b)
one- and two-body IP/EA FSCC operators: S! = 5P 4 §FA_ (¢) FSCC exci-
tation operators: S¥Z or SQ (d) Single-excitations: R. (e) The transformed-
Hamiltonian interaction: H. (f) The effective-Hamiltonian interaction: Hg.

(g) Restriction to active orbitals. (h) Orbitals can be active and inactive (un-
like in S}).



Coupled Cluster based methods for open-shell electronic states

FSCC, ST-EOM-CC, EOM-CC and CI methods can be presented in a very similar way
both conceptually and technically.

The computational cost of the diagonalization step is approximately the same for the CI
and EOM-CC models truncated at the same level of excitation.

The computational cost of the diagonalization step is lower for FSCC and ST-EOM-CC,
compared to EOM-CC and CI.

The truncated EOM-CC model is superior to the Cl truncated at the same level because

effects of higher excitations are “folded in” through the similarity transformation into H. The
role of the similarity transformation is to achieve more compact representation of the right
and left vectors R,L.

Similarly, FSCC and ST-EOM-CC “fold” additional terms into the effective Hamiltonian

relative to EOM-CC, however the procedure becomes somewhat combarsome.



EOM-CC and size extensivity Charge transfer

determinants

rag—>infinity

<l
|

Super-molec.

Stanton J. Chem. Phys.
101, 8928 (1994)




FSCC and size extensivity Charge transfer

determinants

A

rag—>infinity

<l
|

—

Super-molec.

Stanton J. Chem. Phys.
101, 8928 (1994)




EOM-CC and size extensivity Doubly excited

determinants

rag—=infinity
“ “—p

Super-molec.

Stanton J. Chem. Phys.
101, 8928 (1994)

Krylov Chem. Phys. Lett.
350, 522 (2001)




FSCC and size extensivity Doubly excited

determinants

rag—=infinity
+— >

Super-molec.

Stanton J. Chem. Phys.
101, 8928 (1994)

Krylov Chem. Phys. Lett.
350, 522 (2001)




EOM-CC and size intensive

Excitaton energy is size-intensive when
only one subsystem is excited.

It is additively separable into

one open-shell fragment and

one (or many) closed-shell fragments

Mukerjee and co-authors Theor. Chim. Acta. 80, 441 (1991)
Nooijen, Shamasundar and Mukerjee Molec. Phys. 103, 2277 (2005)

E—>EA‘|‘EB

(E,+Ep ,E,+Ey EX+EJE;+E; E;+Eg|

Missner and Bartlett J. Chem. Phys. 102, 7490 (1995)




EOM-CC and size intensive

Excitaton energy is size-intensive when
only one subsystem is excited.

It is additively separable into

one open-shell fragment and

one (or many) closed-shell fragments

Mukerjee and co-authors Theor. Chim. Acta. 80, 441 (1991)

Nooijen, Shamasundar and Mukerjee Molec. Phys. 103, 2277 (2005) This theoretical short

coming 1S not as ominous as one might fear, however, since
excitation energies obtained in monomer calculations persist
in the supermolecule.

Stanton J. Chem. Phys. 101, 8928 (1994)




Summary

* Coupled-cluster (CC) based methods that work within Fock Space,
i.e.,, FSCC, EOMCC and STEOM-CC, are

robust, reliable and accurate tools for calculating transition energies,

. Energi'es may

be ionization potentials, excitation energies, or electron
affinities.

e All transition energies calculated simultaneously &H—eF
pothing).

e Symmetry adaptation (LS or J) is automatic.

* Lets me say few words on my current research...
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Electronic and Nuclear resonances by ab-initio calculations

Resonances are complex poles of Scattering matrix, S(E)=Aout(E)/Ain(E).

E,.c = Energy — > F (width = INVERSE LIFETIME) S(E,.es) = 00

-2

Direct calculations of Resonances
by solving the TISE equation

X )

Inflw(

N H W5 = Eres Wres
Non-Hermitian
Quantum

Mechanics xlau

NIMROD MOISEYEV kz

out—going ;Ain(E;.5)=0 : _ 2=
lpres(r) S e+LRe[k]re Im[k]r S o0

~100 80 -60 40 -20 0 20 40 60 80 100

F(r) —>re‘9

¥,os(F(r)) > 0 ONLY NOW BASIS SET CAN BE USED
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Introduction — Resonances via Padé — Methodology

e We want to calculate electronic complex PES, which are required for
molecular dynamics of resonance states.

@ Resonances via Padé (RVP) yields resonance energies from
standard-quantum-chemistry packages.

e It is based on stabilization graphs.

@ Move into the complex plane by analytical continuation (Padé).

Arik Landau Resonances via Padé January 10, 2019
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The Stabilizations Technique — Basis Set Scaling

@ The eigenvalues are computed, while a set of basis functions (BFs) are
scaled by a real factor — o

@ Scaling — the exponents of the selected BFs are divided by a.
@ The scaled BFs are the most diffuse functions.

e It is a series of calculations in which a is continually varied.
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The Stabilizations Technique — Basis Set Scaling

The eigenvalues are computed, while a set of basis functions (BFs) are
scaled by a real factor — o

Scaling — the exponents of the selected BFs are divided by o.
The scaled BFs are the most diffuse functions.
It is a series of calculations in which o is continually varied.

For oo < 1 the spatial distribution of the basis set compresses
while for oc > 1 it expands.

Arik Landau Resonances via Padé January 10, 2019



The Stabilizations Graph — He(2s?)

| . | . ]
1 1.2 1.4
o (6=0)

Figure: FCl/19s15p10d8f — a is a real scaling parameter

Arik Landau Resonances via Padé January 10, 2019



The Stabilizations Technique

"~ E=E,(res) E=E(continuum) | |INySITyuem

1 Quantum
] Mechanics

NIMROD MOISEYEV

Figure: Solutions to the time-independent Schrédinger equation for a simple
analytically solvable one-dimensional repulsive potential

Arik Landau Resonances via Padé January 10, 2019 8/ 61



First Derivative of the Eigenvalues w.r.t. Scaling Parameters
— for the He(2s?) resonance — UCS/FCl/19s15p10d8f
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January 10, 2019

Arik Landau Resonances via Padé



First Derivative of the Eigenvalues w.r.t. Scaling Parameters
— for the He(2s?) resonance — UCS/FCl/19s15p10d8f

O derivative

Arik Landau Resonances via Padé January 10, 2019 11 / 61



Case Study — The Doubly Excited He* Atom

0_ _
X x
-0.5F
%
= -1F
2]
T X
= -1.5)
g |
oL A RrRvP
- x WV Exact|-
2.5 |

780 750 720 690 660
ReE, mHartree
Complex energies of the
doubly excited Feshbach He*
RVP vs. Exact, in mhartree.

| .
-630

Multiple He* Feshbach Complex Energies

Re E, mhartree

Im E, mhartree

state RVP
1A ~777.7858
*AB., ~760.4625
'B_B., —701.5648
'AB,, —692.8821
2'A7 —621.1877

exact

—777.8676™*
—760.4906""
—701.946""

—693.13497°
—621.9273%

RVP

—2.246
—0.151
—1.244
—0.698
—0.120

exact

—2.271%
—0.1495"
—1.1817*
—0.687"°
—0.108°"

“The doubly-excited states are presented using the D, point group (x

RVP is in good agreement with the exact values

RVP yields reliable complex energy difference

Landau and Haritan J. Phys. Chem. A 2019, 123, 5091-5105



Doubly Excited He* - Transitions (s

Schematic energy levels.

Three bound (bottom) and four resonance states (top).

The red arrows represent allowed dipole transitions.

We have calculated all eight complex transition dipoles.

Bhattacharya, Landau, and Moiseyev J. Phys. Chem. Lett. 11, 5601 (2020)
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Doubly Excited He* - Transition Dipoles

Comparison of Complex Transition Dipoles in m.a.u.”

CS\exrGsG* RV/ P\ basis I RV/P\basis 1I
transition Rep Impu Reu Imp Reu Imp
16 354 +12.11 34.88 +12.44 35.99 +12.99
’@ 313.0 ?@ 313.0 ?@ 313.1 ?@
- 4 —123.1 —=2.554 —-122.8 —2.403 —128.5 —2.367
3 S 328.8 +0.193 326.8 +0.140 321.4 +0.119
37 —192.5 +0.3475 -192.4 +0.3571 —-192.4 +0.2619
4 <6 1522.7 -9.73 15289 —-10.24 1529.3 -10.79
S 6 1705.45 -3.767 1704.42 —4.030 1693.6 —4.499
6 &7 —-2161.4 —-1.007 —-2163.4 —1.164 —2167.5 —2.570

“ExTGSG is a highly optimized (complete) basis set and represents accurate CS/FCI values for comparison. Basis I and basis II are truncated
EXTGSG bases. Basis I is larger than basis II, and they represent the current RVP calculations. The transition indexing is defined in Figure 1.

CS/FCI/EXTG5G :: Kapralova-Zd’anska, Smydke, and Civis JCP 139, 104314 (2013)
Bhattacharya, Landau, and Moiseyev J. Phys. Chem. Lett. 11, 5601 (2020)
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