Perturbation Theory, Linked-Diagrams,
Coupled-Cluster,

Size-Extensivity and Size-Consistency
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‘Size extensivity\

Size-extensivity and size-intensivity refer to properties
that scale linearly or become independent of the size
of the system in the thermodynamic limit:




‘Size extensivity\

xtensivity_and size-intensivity refer to properties

scale linearly or|become independent of the size

of the system 1n thc thermodynamic limit:

R1~(CH»),—Rs
lim, oo (Eyy) — E)) =C

Nooijen, Shamasundar and Mukerjee Molec. Phys. 103, 2277 (2005)

Size consistency ‘I]] deals with two| non-interacting|systems A
and B and states that the energy of the com-

pound system should be the sum of the energies of the individual
systems

Esx = E4 + Eg. Michael Hanrath Chem. Phys. 356, 31 (2009)
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‘ Graphical Representation of Normal-Ordered Operators ‘
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Graphical Representation of Normal-Ordered Operators




The Wave Operator
Hy|a) = Ey|a) 5

Y, = |a) la) = | {000k ...}
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The Wave Operator

Model

¥, function

Fig. 9.1. Simple illustration of the wave operator (
jects out of any function the component along the
generates the exact wave function by operating on



The Wave Operator
Orthogonal

Y, = P¥ ipace Q

: Q
Model | Model

b function ¥, function

Fig. 9.1. Simple illustration of the wave operator (£2z) and the projection operator (P). P pro-
jects out of any function the component along the model function ¥,, and the wave operator

generates the exact wave function by operating on ¥,



The Generalized Bloch Equation

H¥e — Esype
(E° — H,)¥3 = PVYs

which we rewrite as
(E* — Hy)¥W°* = V¥,

a = Ground Electronic State

- We operate on this equation from the left first with P = |a){a|



The Generalized Bloch Equation

H¥e — Esype
(E° — H,)¥3 = PVYs

which we rewrite as _
and then with Q,

(E® — Hy)¥= = Ve,
E°¥s — QH,¥5 — QPVQYS,

a = Ground Electronic State

QH, — HQ)¥§ = (VQ — QPVQ)¥].
ooy (@Ho— Ho¥s = )¥s

[Q, H] P = VQP — QPVQP




The Generalized Bloch Equation

Perturbative I [Q, H]P = VQP — QPVQP

Expansion

Q=14+QM 4 Q@ 4
[Q©, H))P = QVP
[2®, H))P = QVQ©P — QW PVP
29, H)| P = QVQ®P — QWPVP — QW PYQW P



The Generalized Bloch Equation

Perturbative [.Q, Ho] P — VOP — OPVOP

Expansion

|
l[gin), HD] P = QVQ(#—I}P — ‘T‘_ll Qn—m) pyQm-D p |
m=]

(@D, H]P = QVP
[2?, H)P = QVQWMP — QWPVP
[Q®, H]P = QVQ®PP — Q@PVP — QWPYQW P



The Generalized Bloch Equation

Perturbative I [Q, H]P = VQP — QPVQP

Expansion

|
[Q{n), HD] P = QVQ(#—I}P — Zl Qn—m) pY/(Q(m—1) p
m=1

When the wave operator is known in a certain order, the energy can be
obtained in the next higher order by means of (12.37)

ECHD = (q|(V, + V)™ |a) |. (12.53)




The Second-Order Energy

The first-order wave function

g = QW gy [QV, H)] P = QVP.

the first-order wave operator satisfies the equation



The Second-Order Energy

The first-order wave function

g = QW gy [QV, H)] P = QVP.

QvP = H\Z{___@) v__v P = |a){a|
IR
____® ————



The Second-Order Energy

E? = a|(V, + V)2V |a) .

—-®
EQ@) = @ N
--®

(a)

Fig. 12.4 a-c. Graphical representation of the second-order energy for closed-shell systems.
Diagram (a) vanishes if Hartree- 1
g (a) rtree-Fock orbitals are used (a;|H|a> —0.

w0 = Y




12.5 The Linked-Diagram Expansion

The procedure we have developed here can easily be extended to higher orders.
In this section we shall consider the wave operator in_third order, where so-
called unlinked diagrams appear for the first time.' It will be shown that all such

diagrams disappear in that order, and this result will be used to formulate the

general linked-diagram theorem for closed-shell systems.




Cancellation of Unlinked Diagrams in Third Order

 the generalized Bloch equation.

n—1

[Q{n], Hﬂ] P = QVQ{H—I}P — 2 Qn=m) py/Q (m-1) p
m=1

[Q(S), Hg] P = QVQtZJP — QW pPpYypP — QW PYyQML P

_E® QM  P=|a){a| the last term becomes

the second term on the right-hand side cancels the Vo part of the first term.

0, 13 - o(¥, + V=) Ego



Cancellation of Unlinked Diagrams in Third Order
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Cancellation of Unlinked Diagrams in Third Order
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Cancellation of Unlinked Diagrams in Third Order
JNAL
g

some of the 2 diagrams are disconnected.

AB = {AB)} + {4B)




Cancellation of Unlinked Diagrams in Third Order

[Q(SJ, Hﬂ] — Q(Vl + VZ)Q(EJ E@ QM

Disconnected
Q" Diagram




Cancellation of Unlinked Diagrams in Third Order

[, Ho) = Q¥ + V)Q®|- E®Q®
Pl
e

Disconnected
Q% Diagram

Fig. 12.6] Unlinked diagrams (a, c)fcan be formed when ¥ operates on a disconnected wave-
--&
@O = a r b §
EPQ b3 X 2 (12.49)

The unlinked diagrams (a) and (c) are used to cancel (12.49)



The Linked-Diagram Expansion

a diagram if it has no free orbital lines
and that

a diagram is if it has ¢ losed part.

What if we take unlinked
terms into account ?



What if we take unlinked terms into account ?

EO+ = Ga|(V, + V)2 | |
n=3




Unlinked Diagrams in Third Order

Size extensivity unlinked diagrams are “unphysical” in

the sense that their energy contribution increases nonlinearly with the size of
the system. An unlinked energy diagram for a closed-shell system can be se-
parated into two or more diagram parts, each of which is an allowed (linked)
energy diagram. In each such part there is an independent summation over all
electrons of the system. i ’ ' B -




Unlinked Diagrams in Third Order

Size consistency

In each such part there is an independent summation over all

electrons of the system. For a system of noninteracting atoms this would lead
to “‘cross-terms”’, where different parts of the diagram refer to different atoms.
Obviously, such nonlinear terms have no physical relevance: and, in particular,

they can cause a considerable error in calculations of quantities like dissociation

energies. Such nonlinear effects are retained in truncated CI, while they are
eliminated in LDE.

Lets see an other example...



‘Unlinked Diagrams in Third Order |

(2= - o froa) Vo e

second-order wave-operator diagrams

some of the 2% diagrams are disconnected.

(g)
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Unlinked Diagrams| [, H)] = Q(V, + _ oW
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Unlinked Diagrams| [2%, H)] = Q(V, + _ oW
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Unlinked Diagrams| | [Q®, H,] = Q(V, + V,)Q® — E@QW

e = O V- N an -

cancel the corresponding part of —E® Q"



Unlinked Diagrams

It can be shown 1n a similar way that the unlinked diagrams cancel in higher
orders. Recalling that 2 = 1, this leads to

[, Ho] = (QVR " P)iinkea (12.52)

Thus, we replace the generalized Bloch Eq. For the n-order Q™

[Q(n)’ Ho] P = QVQ(n—l)P - n;v: Q—m pyQm-Dp |
m=1

with the LDE



The Linked-Diagram Expansion

[Q(n)’ HO] — (QVQ{n"”)linkcd

Unlinked, nonlinear terms have no physical
relevance, they are retained in truncated Cl,
while they are eliminated in LDE.

* So why not use LDE?

* why do we need Coupled Cluster?




The Generalized Bloch Equation

So far we have used the I [Q, H] P = VQP — QPVQP

Perturbative Expansion

Q=140 4+Q® 4
[QD, H]]P = QVP
[2?, H]P = QVQ"VP — QVPYP
[, H]P = QVQPP — Q@PPYP — QW PYQW P



15.2 Hierarchy of n-Particle Equations

15.2.1 General

Instead of expanding the wave operator order by order as in the previous
chapters, we shall now separate this operator into one-, two-, ... body parts

Q=1+x=1+0,+Q, +Q, + - (15.3)




Hierarchy of n-Particle Equations

* We have seen how the electron correlation can be treated order by order.
* It is quite obvious, however, that this approach rapidly gets very cumbersome,
and it is hardly feasible to go beyond the third-order energy in this way.

* As an alternative to the order-by-order expansion, the equations above can be
separated into a hierarchy of coupled one-, two-, ... particle equations, which can be
solved by means of an iterative procedure.

* This leads to a set of coupled equations, and solving them self-consistently is
equivalent to evaluating certain terms of the perturbation expansion to all orders.



Hierarchy of n-Particle Equations

Be atom for which very accurate Single excitations 0.35%;
configuration-interaction (CI) Double excitations 95.2%
calculations have been performed Triple excitations 1.1%
by Bunge [1968, 1976a,b]. Quadruple excitations 3.4%

* Qualitatively, we can understand these results by considerina the order-by-order expansion
of the energy. Remember the Brillouin condition: (ai|H|a) =0.

* e.g., the first contribution from triples:
A 4™ order energy diagram resulting from
a 2" order triple excitation Q@ operator




Hierarchy of n-Particle Equations ‘ why do we need Coupled Cluster?




Hierarchy of n-Particle Equations ‘ why do we need Coupled Cluster?

I [Q, H,] 7@1) _ QPVQP |.
%

J times a 4-body {\ J times two 2-body Q

“unphysical’’ situation



Hlerarchy of n-Particle Equations I [2, H)P = VQP — QPVQP

In LDE unlinked diagrams of QPVQ are cancelled by unlinked diagrams of QVQ.
* However, quadruply excited terms of Q in QVQ are required in order to cancel unlinked

diagrams of QPVQ with double excitations in the 2 Q operators.

* Therefore, if the Bloch equation — or the Schrodinger equation - is truncated after double
excitations, all unlinked diagrams with double excitations will not be cancelled.

* Hence, CI with singles and doubles is not size-extensive.

* By a slight modification of LDE it is possible to include such effects, which leads to the
exp(S) formalism or the coupled-cluster approach. | will show...

* Such a procedure will then be more accurate than ordinary LDE-truncated at the same
point-and it would have the important property that the wave function-as well as the energy-

separates correctly when a system dissociates into smaller fragments.
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Hierarchy of n-Particle Equations Why more accurate procedure ?

Table 15.2. Relative contributions to the correlation energy of the BH; molecule from con-

nected and disconnected n-body diagrams (from [Paldus et al. 1972)])

B - Is?2s?2p!
One-body . 5 . H
Two-body H ‘W

Three-body
Four-body H

Disconnected

—

<0.1
<0.01
1.9




Hierarchy of n-Particle Equations Why more accurate procedure ?

Table 15.2. Relative contributions to the correlation energy of the BH; molecule from con-
nected and disconnected n-body diagrams (from [Paldus et al. 1972

One-body
Two-body

Three-body
Four-body

It has been found that "independent” pair excitations represented by the disconnected diagram
corresponds to the most important quadruple excitations.

The Exponential Ansatz
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The Coupled-Cluster Equations

S=8+5+8,+ -
2 S,

== (Qﬂ)l:ﬂﬂﬂ

Q, = S+ {S:81} + %{525%} +

Sn - is the Cluster Operator
of n excitations,

accounting for simultaneous

interaction of n electrons.

(exp ()} = 1+ S+ + (5% + ;{57 + - ~$ L), (1544




The Exponenﬁal Ansatz ‘ why do we need Coupled Cluster?
Q = {exp(S)} I [Q2, H] P/=/VQP — QPVQP |.

A 4
V time 3{S°} V times two 2-body S

each 2-body \ /
-

“unphysical’’ situation



The Exponenﬁal Ansatz ‘ why do we need Coupled Cluster?

l [Q, H,] P — QPVQP

A° 4
V time 3{S°} V times two 2-body S
each 2-body /

-

i

“unphysical’ situation | does not happen in CC!




The Coupled-Cluster Equations

equation for the cluster operator S is obtained
from the linked- diagram formula

\ 12, Hy) = (QV D)o

by considering the connected parts of both sides

FOR CLOSED SHELL SYSTEMS

[Ss HO] = (QVQ) ,conn

separated into one-, two-, ... body equations

[Sm HU] - (QV'Q )n,cann

| Q = (exp ()




Size extensivity

Size-extensivity is guaranteed by the evaluation of terms
that the many-body development identifies as linked diagrams,| hence
the Brueckner-Goldstone (2—4) linked-diagram theorem of MBPT /CCM
serves as the cornerstone of the theory.

Bartlett Ann. Rev. Phys. Chem. 32, 359 (1981)




Size extensivity

Size-extensivity is guaranteed by the evaluation of terms

that the many-body development identifies as linked diagrams,

hence

the Brueckner-Goldstone (2—4) linked-diagram theorem of MBPT /CCM

serves as the cornerstone of the theory.

Bartlett Ann. Rev. Phys. Chem. 32, 359 (1981)

If a method is extensive|in the general sense it means

that if the energy is expressed as a perturbation series

with respect to a single determinantal vacuum,

the

energy will necessarily consist of connected diagrams

Ol’l]y. Nooijen, Shamasundar and Mukerjee Molec. Phys. 103, 2277 (2005)



Size extensivity

Size-extensivity is guaranteed by the evaluation of terms

that the many-body development identifies as linked diagrams,

hence

the Brueckner-Goldstone (2—4) linked-diagram theorem of MBPT /CCM

serves as the cornerstone of the theory.

Bartlett Ann. Rev. Phys. Chem. 32, 359 (1981)

If a method is extensive|in the general sense it means

that if the energy is expressed as a perturbation series

with respect to a single determinantal vacuum,

the

energy will necessarily consist of connected diagrams

()l’l]y. Nooijen, Shamasundar and Mukerjee Molec. Phys. 103, 2277 (2005)

The energy of a method is size extensive iff the diagrammatic
expansion of the energy contains connected diagrams only [4].

Michael Hanrath Chem. Phys. 356, 31 (2009)



Size extensivity _ _
Size-extensivity 1s an

mmportant component of the ‘Systematic Treatment of
Electron Correlation’

and then methods that satisfy the
definition of size- extensivity can also be expected
to yield consistent accuracy for systems of increasing

s1ze.
extensivity

is very important for the accuracy of a method. The
accuracy of CISD mecthods significantly deteriorates
with the size of the atom under consideration, while
CCSD methods are generally unaffected.

Nooijen, Shamasundar and Mukerjee Molec. Phys. 103, 2277 (2005)



Size consistency [ Size extensivity

the exact wavefunction can be shown
to have certain qualitative properties.

These are “size consistency” [1]
and “‘size extensivity” [2-4]. Meeting those criteria usually guaran-
tees a fast convergence of the many-body wavefunction.

Michael Hanrath Chem. Phys. 356, 31 (2009)



The Coupled-Cluster Equations
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Coupled-cluster theory in quantum chemistry
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The Coupled-Cluster Equations

Po) = e |®) (@ |H P 0) =0,

(q)'?laz |H(CCSD)I(D> =0, (1| <D aq<a ,

111>
where

T(CCSD) = Tl = T2 E(CCSD) _ e_(TI+T2)HeT1+Tg _ (HeTI—I—TZ)C

‘ECC — (CD()|E|CD())‘ H=e¢THe! = (HeT)C




The Coupled-Cluster Equations
Hausdorff expansion

H=H+[HT]+ %[[H, T1T] + %[[[H, T1T1T]

1 a
Tl = Z?::(L t?{ﬂj%} == \/

1
+ WA TITITIT],

— i aj b
AB = {AB} + {AB} Ts =Y 122 {atibtj} = L/

i>j,a>b “ij




CC vs. CI

all

[Wper) =D Crl®o) = |Wce) = exp(T)| Do)
I




Similarity of the coupled-cluster (CC) equations

(®r|He" |®o)c =0 H=Hy+V

(®;|HoT|®0) ¢ + (®7|Vel|®g) o = 0

1
TiDr + (@7 [V(1+T + §T2 +++)|®o)o =0

Dr = Aenr canonical HF case f,,=¢€,6,,

[Sm HD] (QVQ )n conn




CCD - Coupled Cluster with Doubles

1
TiDr+ (®;|V(1+ T+ 5T2 )| Pg)e =0
1

1
TabDab ((I)a,b|v(1 +T2+ §T22)|(I)O>C
.—D%b =&+ € —Ea— G

T - is the Cluster Operator of two excitations



VYeep=exp(T)dd 0 ke o | .
VAT, | S 5P
CCD eq uaﬁon (ablig) +P(ia/jb)tss (bl fle) —Plia/70)2 (mlf15) +1P(ia/b)es] (ablef) +1P(ia/5b)t, {mn)ij)

+2P(ia/jb)tis (mblej)  —Plia/jb)tc(mbles) —P(ia/jb)ts{mblie) ——Plia/jb)izs,(mblje)

ViRV VAV IRV AV VAN

+2P(ia/jb)t§‘:,t£§ {mnlef) —2P(ia/jb)t3;t;f,‘: {mnlef) +%P(ia/jb) tf,‘:,tj:(mnlef)
\LD@J \A>< RV &/
—Plia/jb)gstismn|fey  +P(ia/b)istls (mn fe) +LP(ia/ b)Y (2 (mm fe)
AL~
= ﬂ-b T 1 i— q C
T2 - Zi}- j,a=>b tr;; ] {(,E 1b ) } - | LP(ia/jo)t 2t (mnlefy  —2P(ia/jb)tht (mnlcf) | Plia/ bt te (mne )

a i a 1
—T#DP® = (L (1 + Ty + ETE )| ®o)c

—2P(ia/ jb)ts, by (mnlef) +Pia/ byt (mnle f)




Vecp=exp(T,) P,

CCD equation
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CCD equation
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Solve self-consistently

> Evaluate all diagrams LD@J \ﬁJ
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TS DR = DXV (1 + Ty + T2 -

7 —2P(ia/jb)te ti (mnlef) +Plia/ jb)te t (mnlef)




CCSD - Coupled Cluster with Singles and Doubles
1
Ty +(@V(1+T + 517+ )| @o)c =0
—T,D, = (&, |V(1+T; + ;TQ Nooe : I=1,2

1
—ToDy ={®,|V(1+T; + 511? )P 3 I=1,2

The equations for /=1 and /=2 are coupled
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