The Coupled-Cluster (CC) Formalism for

Atomic and Molecular Electronic Structures
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From Wikipedia, the free encyclopedia

Main page Coupled cluster (CC) is a numerical technique
The method was initially developed by Fritz Coester and Hermann
Kimmel in the 1950s for studying nuclear-physics phenomena, but
became more frequently used when in 1966 ifi Cizek (and later together
with Josef Paldus) reformulated the method for electron correlation in
atoms and molecules. It is now one of the most prevalent methods in

guantum chemistry that includes electronic correlation.

The life and work of Jifi Cizek
Ajit J. Thakkar

Department of Chemistry, University of New Brunswick, Fredericton, NB E3B 5A3, Canada



Ji¥i Cizek born in Prague on 24 August, 1938. Did his doctoral studies in 1961 at the
Institute of Physical Chemistry of the Czechoslovak Academy of Sciences (csas),
now the . Heyrovsky Institute.

In his doctoral dissertation (1965) he proposed the use of a coupled-cluster
methodology for the study of electron correlation effects in atoms and molecules.
This fundamental work laid the ground work for many further developments in
quantum chemistry, and was summarized in his famous 1966 Journal of Chemical
Physics paper [1] and elaborated upon in his heavily-cited 1968 Advances in
Chemical Physics article [2]. The former paper earned him a csas prize in the
chemistry division. After the completion of his CSc, he obtained a position as Junior
Scientist at the Institute of Physical Chemistry in Prague in 1964.

[11). Cizek, J. Chem. Phys. 45, 4256 (1966).
[2] ). Cizek, Adv. Chem. Phys. 14, 35 (1968).
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ChemPhysChem 2011, 12, 3077 — 3094



Coupled Cluster with Singles Doubles
and Perturbative Triples Excitations

Comput Mol Sci 2013, 3: 482-503

With CCSD(T) becoming the gold standard
126

for quantum chemical calculations,

126. Paldus J. QCI and related CC approaches: a retro-
spection. Mol Phys 2010, 108:2941-2950.
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Full Configuration Interaction (FCI)
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FCI is the exact solution of the Schrodinger

equation in a given one-electron basis set









Excited determinants...
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The Many-Body Hamiltonian
Many electrons atoms
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The Many-Body Hamiltonian

Many electrons atoms e? = h=m=1
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The (three-days course) Outline

1. Hartree Fock, Second Quantization, Normal Form, Goldstone Diagrams
and writing the Many-Body Hamiltonian with Diagrams

2. Perturbation Theory, Linked-Diagram Theorem, Coupled Cluster (CC)
for Closed-Shell Systems

3.CC in Fock-Space for Open-Shell Systems (IP, EA, EE... states)

4 Electronic Resonance (Aoutoionization) States in Chemistry



I. Lindgren J. Morrison

Atomic
Many-Body Theory

Perturbation Theory and the Treatment
of Atomic Many-Body Effects



9.1 Basic Problem
The basic problem in nonrelativistic atomic theory is to find an approximate
solution of the time-independent Schrédinger equation

HY = EY 9.1)

In the perturbation approach the Hamiltonian of the system (H) is split into
two parts, a model Hamiltonian (H,) and a perturbation (V)

H=H,+ V. (9.2)



9.1 Basic Problem

In the perturbation approach the Hamiltonian of the system (H) is split into
two parts, a model Hamiltonian (H,) and a perturbation (V)

H=H,+ V. (9.2)

The model Hamiltonian should be a reasonable approximation to the full
Hamiltonian and it should be simple enough to manage. For atoms, the natural
choice of H, is some central-field approximation, such as the Hartree-Fock
model, and it is, in fact, the presence of a natural first approximation which
makes perturbation theory such a promising method for atoms.



Hartree-Fock ‘ Hartree-Fock ‘
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‘Restricted Hartree Fock‘ Closed-Shells
(equal spins

Enrp = (D|H|D) = up and down)
n/2 n/2 n/2
=2 &= D (2Ji; — Ki)
i i=1 j=1
1
Coulomb 7 — (i (r1) ¢, (r2) | —| @i (r1) 5 (r2))
integral 712
Exchange  K; = (@:i(r1)o;(r2) L @ (r1)pi(r2))
integral 712




Hartree-Fock | The total wave function of n identical fermions

d1(r1)  p2(r1) -+ Pnl(r1)
1 D1 (?"2) D2 (?”2) T éﬁn.(?"z)

D) = v . . . .
le(?nn) ¢2 (frn) T an-(?nn)

* The total wave function for n identical fermions is anti-symmetric
with respect to exchange of the particles.

* This is a rigorous statement of the Pauli exclusion principle



But we are after the a FCI like approximation
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Excited determinants...




Excited determinants...




Second Quantization and the Particle-Hole Formalism

Intuitively, we know that the state |a)
is related to the state |a) in a
| simple way, but it is not possible to express
-this relation easily with the formalism
we have been using.

the idea of second quantization 1s to express the

operators in terms of elementary
(single, double, ...) excitations.




Second Quantization

A single-particle state ¢, is represented

in the formalism of second quantization
. as an operator a! acting on the vacuum state |0)

o> = ai|0) .

Since the operator g} produces the state | ¢,
called a creation operator.

Hartree-Fock| |a) = |ow;---) = ala}---|0)




Second Quantization

A single-particle state ¢, is represented

in the formalism of second quantization
. as an operator a! acting on the vacuum state |0)

o> = ai|0) .

Since the operator g} produces the state | ¢,
called a creation operator.

the hermitian adjoint Ola;, = ¢ .

an absorption, destruction or annihilation operator.



Second Quantization and the Particle-Hole Formalism

anticommutation relations.

fal,a) =0

if two rows or columns are interchanged,

Since a determinant changes sign

The orthonormality of the determinantal product states
imposes further conditions on these operators.



Second Quantization and the Particle-Hole Formalism

In applying the formalism of second quantization to perturbation theory, we
shall normally use a Slater determinant (10.7)

la) = I‘P:% o) = a‘;a} .-+ 0) (11.14)



Second Quantization and the Particle-Hole Formalism

In applying the formalism of second quantization to perturbation theory, we
shall normally use a Slater determinant (10.7)

la) = I‘P:% o) = a‘;a} .-+ 0) (11.14)

a Hartree-Fock determinant| Orbitals appearing in this
determinant are referred to as core orbitals and the remaining, unoccupied ones
as virtual orbitals. When operating on the reference state, it is not possible to

create a particle in a core orbital or to absorb a particle from an virtual orbital.
This means that

Notice that the vacuum is

alolad = ay.lad = 0. changed from |0> to |a> (11.15)




Second Quantization and the Particle-Hole Formalism

G| @) = Gy lad = 0. ] (11.15)

Denoting, as before, core orbitals by a, b, ... and virtual orbitals by 7, s, ...,
the states |a5), |a%5), for which one or two electrons are excited, can be expressed

rN — aT .
laﬂ> raﬂla> (11 163)
|a;§,> _ aIa:abaa | a:) ) and the excited determinants (1 1.16b)



Second Quantization and the Particle-Hole Formalism

Q

O—O- O~
Virtual Particle creation
(particle) o *— O

states

Q

la;) = ala,|a)

“Vacuum” level
e o ® o—
Hole creation
° o ® ;




Many-Body Hamiltonian




Many-Body Hamiltonian

H=H,+V



Many-Body Hamiltonian

N Z A |
pi — 2, + 2.
=1 I; i<j Fij
— Hn -+
1 Z N .
5P — e ur)| = 35 he)
i i=1



Many-Body Hamiltonian

J (Coulomb)
and
K (exchange)




Many-Body Hamiltonian

1 X~ N Z N o1
i=1 =1 F; i<j Tij
H
N
Hﬂ — Z [_
=1
J (Coulomb)
The perturbation and

K (exchange)

V=.H_Hﬂ



Many-Body Hamiltonian

1 X N Z A |
i=1 =1 F; i<j Tij

The perturbation
LA |
V = H — HD—E———Eu(r,)

1<j Ty i=1



The zeroth-order Hamiltonian H,,

Hﬁ  — ihﬂ(f)‘ = ; EIH‘E"
i=1
holi) = &|i)

The 1deas applied above can easily
be extended to two-body operators.



Many-Body Hamiltonian

N
H, = Zhn(f) = Zﬂ;tﬂtgf

i<j

= — 3ldla; Gilulj)> + o Za;aa;amulr AL




Second Quantization and the Particle-Hole Formalism

11.2 Operators in Normal Form

As we have mentioned, the idea of second quantization is to express the opera-
tors in terms of elementary (single, double, ...) excitations. We can easily see,



Second Quantization and the Particle-Hole Formalism

11.2 Operators in Normal Form

As we have mentioned, the idea of second quantization is to express the opera-
tors in terms of elementary (single, double, ...) excitations. We can easily see,
however, that the operators (11.25) do not always have such a simple inter-
pretation.

As an illustration, we consider the one-body operator
F=;a1a,(i|f[j>. (11.27)

As before, we choose a particular Slater determinant |a) as the reference and
define core and virtual orbitals with respect to this state. If i(= a) in (11.27)



Operators in Normal Form

As an 1illustration, we consider the one-body operator

F=3aa,dlflj>. if:[i=a]

alorela> — avil‘tl“) - 0 .

rewrite the operators by means of the
anticommutation rules ala; = —a,al + 9J,

the first term on the right-hand side does not contribute
while the last term reproduces |a) forj = a.

‘SD in this case ala, ‘

‘ does not represent any excitation at all.




Operators in Normal Form

In order to see 1n a more systematic way

which terms do correspond to real
excitations when operating on |a),

we shall rearrange the creation and —
absorption operators so that {a, g} =0
t 2 {a,a} =0
d an a.;
core virt {a” a}} = 511

appear to the right of

acﬂra ﬂﬂd aIrirt alorala> - avirt'“) = 0.




Operators in Normal Form
‘

gzm and a,. appear to the r.!'ghr af Aeore and Ayirt

The terms which contain the former operators

will then give zero when operating on |a),

while the remaining ones will produce real excitations.
operator written in this way 18 said to be in

normal order or in normal form.



Many-Body Hamiltonian

N
H, = 1—21;!0(5) = Z aia, &
N N
V=—>u+ D r;j
i=1 <j

= — 3l Glulj> + 5 33 alajaan i | rid kD)

We consider first the one-body part of the perturbation

U= Zj"-ﬂﬂj Gl —ulj)



Operators in Normal Form

—U = > ajg;i| —ulj)
ij



Operators in Normal Form

—U = > aja;<i| —ulj)
ij

core

=35 Cal —ula) + 33 {ala)} i | —ulj) .
Wick’s theorem can now be formulated as follows:

If A is a product of creation and absorption operators, then

A= {4} + {4} |, (11.49)

|

where {A} represents the normal form of A and {A} represents the sum of the
normal-ordered terms obtained by making all possible single, double, ... con-
tractions within A.



Operators in Normal Form

—U = > aja;<i| —ulj)
ij

core

=31 Ca|—ulay + 33 {ala} <i| —ulj> .

first sum is a number—or a zero-body operator-
-while the second sum repre-

sents a normal-ordered, one-body operator.

each operator in the second summation
either gwes Zero or produces

a determinantal state of the form |al)



Operators in Normal Form

N
H, = ;hn(-‘f) — Z aia,; &
N N
V — = Z Hi + Z F‘:}l
i=1 <j

= — Sala Gilulj> + - 3 aldlaa, ij| rid kD

The second term of the pérturbaiion

C = 2> aldaa, <ijlri} |kl

ikl




Operators in Normal Form

— > dlala,a, <ij|ri KD

ijkl

normal order or in normal form.

C =% Z {atala,a,} (ij|riZ | kD
+ 2 {ala,} E a|rid|jay — <ai|riz|jay)

+o 5 2 (Kab|riy |ab)y — <ba|riz|ab)).



Operators in Normal Form

The perturbation may thus be separated

into the following normal-ordered
zero-, one- and two-body parts:

‘ V=VD—I—V1+V2



Operators in Normal Form

The perturbation may thus be separated

into the following normal-ordered
zero-, one- and two-body parts:

V=Vﬂ_|_ V1+V2

core 1 core

Vo = 2. Ka|—ula) + 5 > (Cab|ri;'|ab) — <ba|rij|ab))
Vi = %ﬁ {ala;} <ilv|Jj>

V, = o > {aldaa} <ij | rid | kT

ificl




Graphical representation of a one-body

The meaning of the formalism of second quantization

can be illustrated by
means of the simple scattering process




Graphical representation of a two-body interaction




Graphical Representation of Normal-Ordered Operators ‘

particles

at A Virtual orbitals

S — — — —— —

a A\ upwards

holes

Pr— N S— — —

a™\y core orbitals

a\s downwards,

N — — — —




‘ Graphical Representation of Normal-Ordered Operators ‘

a r
\Z{___® = {ala,} {r|v|a) = ala,{r|v|a)



‘ Graphical Representation of Normal-Ordered Operators ‘

a r
\Z{___® = {ala,} {r|v|a) = ala,{r|v|a)

F-——-® = {a'a,} (a|v|b) = —a,aia|v|b) .




Graphical Representation of Normal-Ordered Operators

(alata,a,) (rs|rit | )

. e s E——— E—

1
2
t A Nu = —;- alala,a,{rs|ri}|tw)




Graphical Representation of Normal-Ordered Operators

r A\ As — ] {alala,a,} {rs|ri} | tu)

P e e — — —

>—
>
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|
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- alala,a (rs|rid |ty
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The Goldstone rules can be formulated as follows:

Graphical Representation

For each wave-operator diagram there is
a) a creation (absorption) operator for each free outgoing (incoming) orbital
line. These are written in normal form

{a:a}a; Soo ak;aj.«ap} o

where (ala.), etc., originate from the same vertex or from vertices connected
by orbital lines ;

b) a matrix element for each interaction line;

C) an energy denominator for each interaction line

‘D = Z(adcwn — Eup);

ngle-particle eigenvalue associated with the down-

The GOldstO'ne Evaluation R“les ut by a line immediately above the interaction line;

ternal orbital lines;

(__' l)i&+l,

where h is the number of internal core (hole) lines and | the number of
closed loops of orbital lines;

f) a factor of 1/2 for each two-particle interaction and an equivalence factor
equal to the number of equivalent diagrams represented by the diagram
considered.

The rules above hold also for the energy diagrams, except that rule a) does
not apply, and there is

g) no energy denominator associated with the last interaction.




‘ Graphical Representation of Normal-Ordered Operators ‘

V=VD—|— Vl_‘_Vz

core 1 core

Vo = 2. Ka|—ula) + 5 25 (Kab|rij|ab) — <ba|rij|ab))
Vi = %ﬁ {ala)} <ilv|Jj>

V, = 53 alaaal <ijlrid |k

ikl

h= e =0 +




‘ Graphical Representation of Normal-Ordered Operators ‘

V=VD+ VI+V2

core 1 core

Vo = 2, <a|—ula) + 5 >, (Cab|rij|ab) — <ba|rij|ab))

Vi = %ﬁ {ala;} <ilv|j> I

v, = 53 {alaaal <ijlrid |k
ifkcl

Ly V
4 ———® + V-—--® + -—-—-®

1 /\{“'@) T
A \%




Graphical Representation of Normal-Ordered Operators
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The Wave Operator
Hy|a) = Ey|a) 5

Y, = |a) la) = | {000k ...}

=g P @ nw—v —py —ov .




The Wave Operator

Model

¥, function

Fig. 9.1. Simple illustration of the wave operator (
jects out of any function the component along the
generates the exact wave function by operating on



The Wave Operator
Orthogonal

Y, = P¥ ipace Q

: Q
Model | Model

b function ¥, function

Fig. 9.1. Simple illustration of the wave operator (£2z) and the projection operator (P). P pro-
jects out of any function the component along the model function ¥,, and the wave operator

generates the exact wave function by operating on ¥,



The Generalized Bloch Equation

H¥e — Esype
(E° — H,)¥3 = PVYs

which we rewrite as
(E* — Hy)¥W°* = V¥,

a = Ground Electronic State

- We operate on this equation from the left first with P = |a){a|



The Generalized Bloch Equation

H¥e — Esype
(E° — H,)¥3 = PVYs

which we rewrite as _
and then with Q,

(E® — Hy)¥= = Ve,
E°¥s — QH,¥5 — QPVQYS,

a = Ground Electronic State

QH, — HQ)¥§ = (VQ — QPVQ)¥].
ooy (@Ho— Ho¥s = )¥s

[Q, H] P = VQP — QPVQP




The Generalized Bloch Equation

Perturbative I [Q, H]P = VQP — QPVQP

Expansion

Q=14+QM 4 Q@ 4
[Q©, H))P = QVP
[2®, H))P = QVQ©P — QW PVP
29, H)| P = QVQ®P — QWPVP — QW PYQW P



The Generalized Bloch Equation

Perturbative I [Q, H]P = VQP — QPVQP

Expansion

|
l[gin), HD] P = QVQ(#—I}P — ‘T‘_ll Qn—m) pyQm-D p |
m=]

(2D, H]P = QVP
[2?, H)P = QVQWMP — QWPVP
[Q®, H]P = QVQ®PP — Q@PVP — QWPYQW P




The Generalized Bloch Equation

Perturbative I [Q, H]P = VQP — QPVQP

Expansion

|
[Q{n), HD] P = QVQ(#—I}P — Zl Qn—m) pY/(Q(m—1) p
m=1

When the wave operator is known in a certain order, the energy can be
obtained in the next higher order by means of (12.37)

ECHD = (q|(V, + V)™ |a) |. (12.53)
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